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Softmax attention

Attention:

Parallel training : O = softmax(QK⊤ ⊙ M)V ∈ RL×d

Iterative inference : ot =
t∑

j=1

exp(q⊤
t kj)∑t

l=1 exp(q⊤
t kl)

vj ∈ Rd

where M ∈ RL×L is the casual mask:

Mi,j =

−∞ if j > i
1 if j ≤ i

• Training: quadratic time complexity
• Inference: linear space complexity with KV cache.
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Linear attention = standard attention - softmax

Linear attention (Katharopoulos et al. 2020):

Parallel training : O = softmax(QK⊤ ⊙ M)V ∈ RL×d

Iterative inference : ot =
t∑

j=1

exp(q⊤
t kj)∑t

l=1 exp(q⊤
t kl)

vj ∈ Rd

where M is the causal mask for linear attention:

Mi,j =

0 if j > i
1 if j ≤ i
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Equivalent View: Matrix-Valued Hidden States

ot =
t∑

j=1
(q⊤

t kj)vj

=
t∑

j=1
vj(k⊤

j qt) k⊤
j qt = q⊤

t kj ∈ R

= (
t∑

j=1
vjk⊤

j )︸ ︷︷ ︸
St∈Rd×d

qt By associativity
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Linear attention = Linear RNN + matrix-valued hidden states

Let St =
∑t

j=1 vjk⊤
j ∈ Rd×d be the matrix-valued hidden state,

then:
St = St−1 + vtk⊤

t ∈ Rd×d

ot = Stqt ∈ Rd

• Linear attention implements elementwise linear recurrence,
allowing for efficient inference.
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Linear attention = Linear RNN + matrix-valued hidden states

Let St =
∑t

j=1 vjk⊤
j ∈ Rd×d be the matrix-valued hidden state,

then:
St = St−1 + vtk⊤

t ∈ Rd×d

ot = Stqt ∈ Rd

• Linear attention has a matrix-valued hidden state,
significantly increasing the state size (and thereby real-world
task performance).
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Hardware-efficient training of linear attention

• The outer-product structure allows hardware-efficient
state expansion by leveraging matrix multiplication, which is
highly optimized with tensor cores in modern GPUs.

L∑
i=1

vik⊤
i = V⊤K

where V = [v1, · · · , vL]⊤ ∈ RL×d,K = [k1, · · · , kL]⊤ ∈ RL×d.

� Autoregressive Modeling Tip

For autoregressive modeling, we can checkpoint some inter-
mediate states, enabling efficient computation of outputs at
any position. → Chunkwise parallel form
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S[0] S[1] S[2]

V⊤
[1]K[1] V⊤

[2]K[2]

Sequential Chunk-Level State Passing:

Chunk Size C Chunk Size C

S[t+1] = S[t]︸︷︷︸
Rd×d

+ V⊤
[t]︸︷︷︸

Rd×C

K[t]︸︷︷︸
RC×d

∈ Rd×d

Computational Complexity: O(Cd2) per chunk and O(Ld2) for the
entire sequence. 8



Parallel Output Computation:

O[t] = Q[t]S⊤
[t]︸ ︷︷ ︸

inter-chunk:Ointer
[t]

+ (Q[t]K⊤
[t] ⊙ M)V[t]︸ ︷︷ ︸

intra-chunk:Ointra
[t]

∈ RC×d

Computational Complexity: O(C2d + Cd2) per chunk.
O(Ld2 + LCd) for the entire sequence. 9



Key limitations of linear attention

However, linear attention has fundamental limitations in
in-context retrieval

or in-context copy:
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Linear Attention: Associative Memory View

Key Idea: Linear attention builds a key-value memory via outer
products:

S =
∑

i
vik⊤

i

To retrieve vj, we compute:

Skj =
∑

i
vi(k⊤

i kj)

This includes the desired vj and unwanted cross-terms:

= vj +
∑
i̸=j

(k⊤
i kj)vi︸ ︷︷ ︸

retrieval error

(assuming all ki are l2-normalized)

Goal: Minimize retrieval error
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Fundamental Limitation: Orthogonality

To eliminate retrieval error:

k⊤
i kj = 0 for all i ̸= j

But: In Rd, there are at most d orthogonal vectors!

Implication:

• Limited capacity for distinct key-value pairs
• Explains why increasing head dimensions helps (more room in

space)
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Retrieval Overload in Practice

In practice:

• Vanilla linear attention underperforms softmax
• Can’t erase previous associations (no ”forgetting”)
• Accumulated interference → degraded performance on long

sequences

”The enemy of memory is not time; it’s other memories.”
— David Eagleman
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DeltaNet: Linear attention with delta rule
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DeltaNet: Key-Value Memory Update

DeltaNet (Schlag, Irie, and Schmidhuber 2021) uses an intuitive
memory update mechanism:

qt = WQxt Query vector is computed

kt = WKxt Key vector is computed

vt = WVxt Value vector is computed

βt = sigmoid(Wβxt) Beta scalar value is computed

vold
t = St−1kt Old value is retrieved using current key

vnew
t = βtvt + (1 − βt)vold

t New value combines current and old values

St = St−1 − vold
t k⊤

t︸ ︷︷ ︸
remove old

+ vnew
t k⊤

t︸ ︷︷ ︸
write new

State matrix is updated

ot = Stqt Output is retrieved from memory using query

Compared to vanilla linear attention, DeltaNet can not only write new
values to memory, but also remove old values from memory.
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In-context associative recall on MQAR

Multi-Query Associative Recall (MQAR, Arora et al. 2023)

A synthetic benchmark for testing in-context associative recall. Example:

• Given key-value pairs: “A 4 B 3 C 6 F 1 E 2”
• Query: “A ? C ? F ? E ? B ?”
• Expected output: “4, 6, 1, 2, 3”
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Sequence Length: 512, Key-Value Pairs: 64
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GLA
RetNet
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Figure 1: Accuracy (%) on MQAR. DeltaNet achieves the perfect recall.
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DeltaNet: Chunkwise Parallel Training

St = St−1 + (vnew
t − vold

t )k⊤
t

= St−1 + βt(vt − St−1kt)︸ ︷︷ ︸
defined as ut

k⊤
t

= St−1 + utk⊤
t

=
t∑

i=1
uik⊤

i

Once “pseudo-values” ut are computed, DeltaNet can be trained
using the same kernel as linear attention.
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DeltaNet: Chunkwise Parallel Training

St = St−1 + βt(vt − St−1kt)k⊤
t

= St−1
(

I − βtktk⊤
t

)
+ βtvtk⊤

t

=
t∑

i=1

βivik⊤
i

t∏
j=i+1

(I − βjkjk⊤
j )︸ ︷︷ ︸

Pt
j


Using the WY representation (Bischof and Loan 1985):

Pt
1 = I −

t∑
i=1

wik⊤
i .

Key Insights:: The cumulative product
∏

becomes a cumulative
sum

∑
, enabling efficient matrix-multiply-based training.

18



Sequential Chunk-Level State Passing:

S[t+1] = S[t] (I − W⊤
[t]K[t]) + U⊤

[t]K[t]

Using hardware-friendly UT transform (Joffrain et al. 2006):

T[t] =
(

I + tril(diag(β[t])K[t]K⊺
[t],−1)

)−1
diag

(
β[t]

)
∈ RC×C

⋆ Lower triangular matrix inversion can be computed efficiently

W[t] = T[t]K[t], U[t] = T[t]V[t] ∈ RC×d

See https://sustcsonglin.github.io/blog/2024/deltanet-2/ for details.
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Parallel Output Computation:

O[t] = Q[t]S⊤
[t] +

(
Q[t]K⊤

[t] ⊙ M
)(

U[t] − W[t]S⊤
[t]

)
Compared to vanilla linear attention, the “pseudo-values” need to
be adjusted by the historical context: W[t]S⊤

[t].
20



Speed Comparison

Figure 2: Chunkwise parallel form provides significant speedup over
recurrent form. 21



Speed Comparison
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DeltaNet with forget gates

DeltaNet updates only a single key-value association pair at each
time step.

⇓

This results in slow forgetting speed, requiring d steps to erase the
entire memory.
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DeltaNet with forget gates

A key lesson we’ve learned from the linear attention and broader
RNN literature is that forget gates (a.k.a. data-dependent decay)
are unreasonably effective!
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DeltaNet with forget gates

Gated linear attention (Yang et al. 2023) formulation:

St = St−1 ⊙ Gt + vtk⊤
t ∈ Rd×d

where Gt ∈ Rd×d can be defined in various ways:

• GLA/RWKV6/HGRN2: Gt = 1tα⊤
t

• Decaying Fast weight: Gt = βtα⊤
t

• Mamba1: Gt = exp(−(∆t1⊤)⊙ exp(A))
• Mamba2: Gt = γt11⊤

See Table 1 of GLA (Yang et al. 2023) for a comprehensive summary.
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Gated DeltaNet

Gated DeltaNet (Yang, Kautz, and Hatamizadeh 2024) uses a
Mamba2-style scalar-valued forget gate αt ∈ [0, 1]:

St = αtSt−1 + vtk⊤
t Mamba2

St = αtSt−1(I − βtktk⊤
t ) + βtvtk⊤

t Gated DeltaNet

Model ppl ↓ LM-eval ↑ Recall ↑ Long ↑

Mamba1 17.92 53.12 21.0 14.6
Mamba2 16.56 54.89 29.8 13.5
DeltaNet 17.72 52.14 26.2 13.6
Gated DeltaNet 16.42 55.32 30.6 16.6

Mamba+SWA 16.13 54.00 37.3 15.9
Gated DeltaNet+SWA 16.07 56.41 40.1 17.8

Table 1: Performance comparison of 1.3B models trained on 100B
tokens. Source: Yang, Kautz, and Hatamizadeh 2024. 26



RWKV-7

RWKV-7 (Peng et al. 2025) uses a GLA-style vector-valued forget
gate αt ∈ [0, 1]d:

St = St−1diag(αt) + vtk⊤
t GLA/RWKV-6

St = St−1(diag(αt) + atb⊤
t ) + vtk⊤

t RWKV-7

RWKV-7 can solve problems that are NC1-complete under AC0

reductions (as can DeltaNet and Gated DeltaNet), demonstrating
their enhanced computational power.
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DeltaNet’s expressivity

Figure 3: Source: Merrill, Petty, and Sabharwal 2024

• TC0: Constant-depth parallel networks with threshold gates
and massive fan-in

• Transformers
• Linear RNNs with diagonal transition matrices (e.g., Mamba,

Gated Linear Attention)
• NC1: Logarithmic-depth networks with limited fan-in, capable

of more complex tasks
• Nonlinear RNNs
• Linear RNNs with data-dependent nondiagonal transition

matrices 28



DeltaNet’s expressivity

St = St−1 − βt (St−1kt − vt) k⊤
t

= St−1
(

I − βtktk⊤
t

)
+ βtvtk⊤

t

DeltaNet uses Generalized Householder (GH) transition matrices,
which are both data-dependent and nondiagonal, making it
possible to achieve expressiveness beyond TC0.
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DeltaNet’s expressivity

St = St−1 (I − βtktk⊤
t )︸ ︷︷ ︸

GH transition

+βtvtk⊤
t =

t∑
i=1

βivikt
i

t∏
j=i+1

(I − βjkjk⊤
j )︸ ︷︷ ︸

cumulative GH products


Key Properties:

• Expressiveness: When allowing negative eigenvalues in GH
matrices (Grazzi et al. 2024), the cumulative products of GH
matrices can represent any matrix with Euclidean norm < 1.

• Complexity Class: Cumulative products of general matrices
cannot be computed in TC0 (Mereghetti and Palano 2000).

• Conclusion: DeltaNet with negative eigenvalues has
expressiveness beyond TC0, strictly exceeding SSMs and
Transformers.
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DeltaNet’s expressivity

Figure 4: Synthetic tasks performance comparison (source: Grazzi et al.
2024). [0, 1] and [−1, 1] denotes the ranges of eigenvalues for each
model’s transition matrix.

• Allowing negative eigenvalues could boost performance for
both Mamba and DeltaNet.

• DeltaNet achieves superior performance due to its richer
expressiveness. 31



DeltaNet as Test-Time Training

32



Sequence Modeling as Test-Time Regression (Wang, Shi, and
Fox 2025)

Source: Test-Time Regression (Slide Content)We are here 33



DeltaNet: test-time objective

Directly minimize Euclidean distance

St−1kt

vt
Stkt

Objective: Lt(S) =
1
2∥Skt − vt∥2

SGD update: St = St−1 − βt∇Lt(St−1) = St−1 − βt(St−1kt − vt)k⊤
t

Key Insight: hidden state as a proxy for KV cache

DeltaNet encodes key-value associations directly in the hidden state
matrix St as a neural memory, enabling efficient in-context learning
and retrieval without an explicit KV cache.
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DeltaProduct

Generalizing the DeltaNet by performing multiple gradient descent
steps (i.e., nh) per token:

St,j = St,j−1 − βt,j∇Lt,j(St,j−1)

=
(

I − βt,jkt,jk⊤
t,j

)
St,j−1 + βt,jvt,jk⊤

t,j

where St,0 = St−1 and St,nh = St. This results in a high-rank
recurrent updates

St = St−1At + Bt

At =
nh∏

j=1

(
I − βt,jkt,jk⊤

t,j

)

Bt =
nh∑

j=1
βt,jvt,jk⊤

t,j

j−1∏
l=1

(
I − βt,lkt,lk⊤

t,l

)
where both the transition matrix At and the input Bt are rank-nh. 35



DeltaProduct

Figure 5: (Left) DeltaProductnh learns higher-order permutation groups
like S4 in one layer, while DeltaNet (nh = 1) is limited to S2. (Right)
Length extrapolation of DeltaProduct improves significantly with higher
nh.
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TTT layer

TTT (Sun et al. 2024) used a nonlinear regression objective loss:

Lt(S) =
1
2∥fS(kt)− vt∥2

where fS is a nonlinear transformation parameterized by S.

Examples:

• TTT-linear:

fS(x) = LN(Sx) + x,

• TTT-MLP:

fS(x) = LN(MLPS(x)) + x

where LN denotes layer normalization.
37



TTT layer

The nonlinear loss induces a nonlinear recurrence, posing
challenges for parallelization.

Solution: Mini-batch Gradient Descent

• Minibatch size aligns with chunk size.
• Each token within a chunk is treated as an independent

training example for parallel processing.
• Sequential dependencies are preserved via a lightweight linear

recurrence within chunks.

This approach essentially combines intra-chunk linear recurrence
with inter-chunk nonlinear recurrence.
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Titans

TTT (Sun et al. 2024) extends this to a nonlinear regression loss:

Lt(S) =
1
2∥fS(kt)− vt∥2

where fS is a nonlinear transformation parameterized by S.

• Titans (Behrouz, Zhong, and Mirrokni 2024) further enhances
TTT by integrating momentum and weight decay into the
mini-batch SGD update.
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Instead of performing (multiple) gradient descent to optimize
the objective, can we get a closed-form solution?
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LongHorn

Longhorn (Liu et al. 2024) optimizes the following objective:

Lt(S) = ∥S − St−1∥2
F︸ ︷︷ ︸

D(S,St−1)

−βt∥Skt − vt∥2︸ ︷︷ ︸
lt(S)

with a closed-form solution:

St = St−1
(

I − ϵtktk⊤
t

)
+ ϵtvtk⊤

t , ϵt =
βt

1 + βtk⊤
t kt

Key difference: DeltaNet’s βt does not depend on kt, while
Longhorn’s ϵt depends on kt.

41



Mesa layer

DeltaNet/Longhorn only considers the prediction error of the
current token, while Mesa layer (Oswald et al. 2024) considers the
prediction error of all historical tokens:

Lt(S) = ∥S − St−1∥2
F︸ ︷︷ ︸

D(S,St−1)

+
t∑

i=1
−βi∥Ski − vi∥2

︸ ︷︷ ︸
lt(S)

with a closed-form solution:

St = St−1 − βtPtkt (St−1kt − vt)
⊤

Pt = Pt−1 −
βtPt−1ktk⊤

t Pt−1
1 + βtk⊤

t Pt−1kt
where Pt is updated recursively using the Matrix Inversion Lemma:

(A + uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
42



DeltaNet/Longhorn vs. Mesa Layer

DeltaNet/Longhorn vs. Mesa Layer

• DeltaNet/Longhorn: Like Least Mean Square (LMS)
• Only considers current prediction error
• Simple and computationally efficient
• May require more iterations to converge

• Mesa Layer: Like Recursive Least Squares (RLS)
• Considers all historical prediction errors
• Optimal in terms of minimizing cumulative error
• Faster convergence but higher computational cost
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Thanks!
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