
Toward More Expressive yet Scalable RNNs:
DeltaNet and Its Variants

Songlin Yang
July 15, 2025

MIT CSAIL

1



2



Softmax attention

Attention:

Parallel training : O = softmax(QK⊤ ⊙ M)V ∈ RL×d

Iterative inference : ot =
t∑

j=1

exp(q⊤
t kj)∑t

l=1 exp(q⊤
t kl)

vj ∈ Rd

where M ∈ RL×L is the casual mask:

Mi,j =

−∞ if j > i
1 if j ≤ i

• Training: quadratic time complexity
• Inference: linear space complexity with KV cache.

3



Linear attention = standard attention - softmax

Linear attention (Katharopoulos et al. 2020):

Parallel training : O = softmax(QK⊤ ⊙ M)V ∈ RL×d

Iterative inference : ot =
t∑

j=1

exp(q⊤
t kj)∑t

l=1 exp(q⊤
t kl)

vj ∈ Rd

where M is the causal mask for linear attention:

Mi,j =

0 if j > i
1 if j ≤ i

4



Equivalent View: Matrix-Valued Hidden States

ot =
t∑

j=1
(q⊤

t kj)vj

=
t∑

j=1
vj(k⊤

j qt) k⊤
j qt = q⊤

t kj ∈ R

= (
t∑

j=1
vjk⊤

j )︸ ︷︷ ︸
St∈Rd×d

qt By associativity

5



Linear attention = Linear RNN + matrix-valued hidden states

Let St =
∑t

j=1 vjk⊤
j ∈ Rd×d be the matrix-valued hidden state,

then:
St = St−1 + vtk⊤

t ∈ Rd×d

ot = Stqt ∈ Rd

• Linear attention implements elementwise linear recurrence,
allowing for efficient inference.

6



Linear attention = Linear RNN + matrix-valued hidden states

Let St =
∑t

j=1 vjk⊤
j ∈ Rd×d be the matrix-valued hidden state,

then:
St = St−1 + vtk⊤

t ∈ Rd×d

ot = Stqt ∈ Rd

• Linear attention has a matrix-valued hidden state,
significantly increasing the state size (and thereby real-world
task performance).

6



Hardware-efficient training of linear attention

• The outer-product structure allows hardware-efficient
state expansion by leveraging matrix multiplication, which is
highly optimized with tensor cores in modern GPUs.

L∑
i=1

vik⊤
i = V⊤K

where V = [v1, · · · , vL]⊤ ∈ RL×d,K = [k1, · · · , kL]⊤ ∈ RL×d.

� Autoregressive Modeling Tip

For autoregressive modeling, we can checkpoint some inter-
mediate states, enabling efficient computation of outputs at
any position. → Chunkwise parallel form

7



S[0] S[1] S[2]

V⊤
[1]K[1] V⊤

[2]K[2]

Sequential Chunk-Level State Passing:

Chunk Size C Chunk Size C

S[t+1] = S[t]︸︷︷︸
Rd×d

+ V⊤
[t]︸︷︷︸

Rd×C

K[t]︸︷︷︸
RC×d

∈ Rd×d

Computational Complexity: O(Cd2) per chunk and O(Ld2) for the
entire sequence. 8



Parallel Output Computation:

O[t] = Q[t]S⊤
[t]︸ ︷︷ ︸

inter-chunk:Ointer
[t]

+ (Q[t]K⊤
[t] ⊙ M)V[t]︸ ︷︷ ︸

intra-chunk:Ointra
[t]

∈ RC×d

Computational Complexity: O(C2d + Cd2) per chunk.
O(Ld2 + LCd) for the entire sequence. 9



Key limitations of linear attention

However, linear attention has fundamental limitations in
in-context retrieval

or in-context copy:

10



Linear Attention: Associative Memory View

Key Idea: Linear attention builds a key-value memory via outer
products:

S =
∑

i
vik⊤

i

To retrieve vj, we compute:

Skj =
∑

i
vi(k⊤

i kj)

This includes the desired vj and unwanted cross-terms:

= vj +
∑
i̸=j

(k⊤
i kj)vi︸ ︷︷ ︸

retrieval error

(assuming all ki are l2-normalized)

Goal: Minimize retrieval error
11



Fundamental Limitation: Orthogonality

To eliminate retrieval error:

k⊤
i kj = 0 for all i ̸= j

But: In Rd, there are at most d orthogonal vectors!

Implication:

• Limited capacity for distinct key-value pairs
• Explains why increasing head dimensions helps (more room in

space)

12



Retrieval Overload in Practice

In practice:

• Vanilla linear attention underperforms softmax
• Can’t erase previous associations (no ”forgetting”)
• Accumulated interference → degraded performance on long

sequences

”The enemy of memory is not time; it’s other memories.”
— David Eagleman

13



DeltaNet: Linear attention with delta rule

14



DeltaNet: Key-Value Memory Update

DeltaNet (Schlag, Irie, and Schmidhuber 2021) uses an intuitive
memory update mechanism:

qt = WQxt Query vector is computed

kt = WKxt Key vector is computed

vt = WVxt Value vector is computed

βt = sigmoid(Wβxt) Beta scalar value is computed

vold
t = St−1kt Old value is retrieved using current key

vnew
t = βtvt + (1 − βt)vold

t New value combines current and old values

St = St−1 − vold
t k⊤

t︸ ︷︷ ︸
remove old

+ vnew
t k⊤

t︸ ︷︷ ︸
write new

State matrix is updated

ot = Stqt Output is retrieved from memory using query

Compared to vanilla linear attention, DeltaNet can not only write new
values to memory, but also remove old values from memory.

15



In-context associative recall on MQAR

Multi-Query Associative Recall (MQAR, Arora et al. 2023)

A synthetic benchmark for testing in-context associative recall. Example:

• Given key-value pairs: “A 4 B 3 C 6 F 1 E 2”
• Query: “A ? C ? F ? E ? B ?”
• Expected output: “4, 6, 1, 2, 3”

64 128 256 5120

25

50

75

100

Model dimension

Ac
cu

ra
cy

(%
)

Sequence Length: 512, Key-Value Pairs: 64

DeltaNet
Mamba
GLA
RetNet
RWKV4
Hyena

Figure 1: Accuracy (%) on MQAR. DeltaNet achieves the perfect recall.

16



DeltaNet: Chunkwise Parallel Training

St = St−1 + (vnew
t − vold

t )k⊤
t

= St−1 + βt(vt − St−1kt)︸ ︷︷ ︸
defined as ut

k⊤
t

= St−1 + utk⊤
t

=
t∑

i=1
uik⊤

i

Once “pseudo-values” ut are computed, DeltaNet can be trained
using the same kernel as linear attention.

17



DeltaNet: Chunkwise Parallel Training

St = St−1 + βt(vt − St−1kt)k⊤
t

= St−1
(

I − βtktk⊤
t

)
+ βtvtk⊤

t

=
t∑

i=1

βivik⊤
i

t∏
j=i+1

(I − βjkjk⊤
j )︸ ︷︷ ︸

Pt
j


Using the WY representation (Bischof and Loan 1985):

Pt
1 = I −

t∑
i=1

wik⊤
i .

Key Insights:: The cumulative product
∏

becomes a cumulative
sum

∑
, enabling efficient matrix-multiply-based training.

18



Sequential Chunk-Level State Passing:

S[t+1] = S[t] (I − W⊤
[t]K[t]) + U⊤

[t]K[t]

Using hardware-friendly UT transform (Joffrain et al. 2006):

T[t] =
(

I + tril(diag(β[t])K[t]K⊺
[t],−1)

)−1
diag

(
β[t]

)
∈ RC×C

⋆ Lower triangular matrix inversion can be computed efficiently

W[t] = T[t]K[t], U[t] = T[t]V[t] ∈ RC×d

See https://sustcsonglin.github.io/blog/2024/deltanet-2/ for details.

19

https://sustcsonglin.github.io/blog/2024/deltanet-2/


Parallel Output Computation:

O[t] = Q[t]S⊤
[t] +

(
Q[t]K⊤

[t] ⊙ M
)(

U[t] − W[t]S⊤
[t]

)
Compared to vanilla linear attention, the “pseudo-values” need to
be adjusted by the historical context: W[t]S⊤

[t].
20



Speed Comparison

Figure 2: Chunkwise parallel form provides significant speedup over
recurrent form. 21



Speed Comparison

22



DeltaNet with forget gates

DeltaNet updates only a single key-value association pair at each
time step.

⇓

This results in slow forgetting speed, requiring d steps to erase the
entire memory.

23



DeltaNet with forget gates

A key lesson we’ve learned from the linear attention and broader
RNN literature is that forget gates (a.k.a. data-dependent decay)
are unreasonably effective!

24



DeltaNet with forget gates

Gated linear attention (Yang et al. 2023) formulation:

St = St−1 ⊙ Gt + vtk⊤
t ∈ Rd×d

where Gt ∈ Rd×d can be defined in various ways:

• GLA/RWKV6/HGRN2: Gt = 1tα⊤
t

• Decaying Fast weight: Gt = βtα⊤
t

• Mamba1: Gt = exp(−(∆t1⊤)⊙ exp(A))
• Mamba2: Gt = γt11⊤

See Table 1 of GLA (Yang et al. 2023) for a comprehensive summary.

25



Gated DeltaNet

Gated DeltaNet (Yang, Kautz, and Hatamizadeh 2024) uses a
Mamba2-style scalar-valued forget gate αt ∈ [0, 1]:

St = αtSt−1 + vtk⊤
t Mamba2

St = αtSt−1(I − βtktk⊤
t ) + βtvtk⊤

t Gated DeltaNet

Model ppl ↓ LM-eval ↑ Recall ↑ Long ↑

Mamba1 17.92 53.12 21.0 14.6
Mamba2 16.56 54.89 29.8 13.5
DeltaNet 17.72 52.14 26.2 13.6
Gated DeltaNet 16.42 55.32 30.6 16.6

Mamba+SWA 16.13 54.00 37.3 15.9
Gated DeltaNet+SWA 16.07 56.41 40.1 17.8

Table 1: Performance comparison of 1.3B models trained on 100B
tokens. Source: Yang, Kautz, and Hatamizadeh 2024. 26



RWKV-7

RWKV-7 (Peng et al. 2025) uses a GLA-style vector-valued forget
gate αt ∈ [0, 1]d:

St = St−1diag(αt) + vtk⊤
t GLA/RWKV-6

St = St−1(diag(αt) + atb⊤
t ) + vtk⊤

t RWKV-7

RWKV-7 can solve problems that are NC1-complete under AC0

reductions (as can DeltaNet and Gated DeltaNet), demonstrating
their enhanced computational power.

27



DeltaNet’s expressivity

Figure 3: Source: Merrill, Petty, and Sabharwal 2024

• TC0: Constant-depth parallel networks with threshold gates
and massive fan-in

• Transformers
• Linear RNNs with diagonal transition matrices (e.g., Mamba,

Gated Linear Attention)
• NC1: Logarithmic-depth networks with limited fan-in, capable

of more complex tasks
• Nonlinear RNNs
• Linear RNNs with data-dependent nondiagonal transition

matrices 28



DeltaNet’s expressivity

St = St−1 − βt (St−1kt − vt) k⊤
t

= St−1
(

I − βtktk⊤
t

)
+ βtvtk⊤

t

DeltaNet uses Generalized Householder (GH) transition matrices,
which are both data-dependent and nondiagonal, making it
possible to achieve expressiveness beyond TC0.

29



DeltaNet’s expressivity

St = St−1 (I − βtktk⊤
t )︸ ︷︷ ︸

GH transition

+βtvtk⊤
t =

t∑
i=1

βivikt
i

t∏
j=i+1

(I − βjkjk⊤
j )︸ ︷︷ ︸

cumulative GH products


Key Properties:

• Expressiveness: When allowing negative eigenvalues in GH
matrices (Grazzi et al. 2024), the cumulative products of GH
matrices can represent any matrix with Euclidean norm < 1.

• Complexity Class: Cumulative products of general matrices
cannot be computed in TC0 (Mereghetti and Palano 2000).

• Conclusion: DeltaNet with negative eigenvalues has
expressiveness beyond TC0, strictly exceeding SSMs and
Transformers.

30



DeltaNet’s expressivity

Figure 4: Synthetic tasks performance comparison (source: Grazzi et al.
2024). [0, 1] and [−1, 1] denotes the ranges of eigenvalues for each
model’s transition matrix.

• Allowing negative eigenvalues could boost performance for
both Mamba and DeltaNet.

• DeltaNet achieves superior performance due to its richer
expressiveness. 31



DeltaNet as Test-Time Training

32



Sequence Modeling as Test-Time Regression (Wang, Shi, and
Fox 2025)

Source: Test-Time Regression (Slide Content)We are here 33



DeltaNet: test-time objective

Directly minimize Euclidean distance

St−1kt

vt
Stkt

Objective: Lt(S) =
1
2∥Skt − vt∥2

SGD update: St = St−1 − βt∇Lt(St−1) = St−1 − βt(St−1kt − vt)k⊤
t

Key Insight: hidden state as a proxy for KV cache

DeltaNet encodes key-value associations directly in the hidden state
matrix St as a neural memory, enabling efficient in-context learning
and retrieval without an explicit KV cache.

34



DeltaProduct

Generalizing the DeltaNet by performing multiple gradient descent
steps (i.e., nh) per token:

St,j = St,j−1 − βt,j∇Lt,j(St,j−1)

=
(

I − βt,jkt,jk⊤
t,j

)
St,j−1 + βt,jvt,jk⊤

t,j

where St,0 = St−1 and St,nh = St. This results in a high-rank
recurrent updates

St = St−1At + Bt

At =
nh∏

j=1

(
I − βt,jkt,jk⊤

t,j

)

Bt =
nh∑

j=1
βt,jvt,jk⊤

t,j

j−1∏
l=1

(
I − βt,lkt,lk⊤

t,l

)
where both the transition matrix At and the input Bt are rank-nh. 35



DeltaProduct

Figure 5: (Left) DeltaProductnh learns higher-order permutation groups
like S4 in one layer, while DeltaNet (nh = 1) is limited to S2. (Right)
Length extrapolation of DeltaProduct improves significantly with higher
nh.

36



TTT layer

TTT (Sun et al. 2024) used a nonlinear regression objective loss:

Lt(S) =
1
2∥fS(kt)− vt∥2

where fS is a nonlinear transformation parameterized by S.

Examples:

• TTT-linear:

fS(x) = LN(Sx) + x,

• TTT-MLP:

fS(x) = LN(MLPS(x)) + x

where LN denotes layer normalization.
37



TTT layer

The nonlinear loss induces a nonlinear recurrence, posing
challenges for parallelization.

Solution: Mini-batch Gradient Descent

• Minibatch size aligns with chunk size.
• Each token within a chunk is treated as an independent

training example for parallel processing.
• Sequential dependencies are preserved via a lightweight linear

recurrence within chunks.

This approach essentially combines intra-chunk linear recurrence
with inter-chunk nonlinear recurrence.

38



Titans

TTT (Sun et al. 2024) extends this to a nonlinear regression loss:

Lt(S) =
1
2∥fS(kt)− vt∥2

where fS is a nonlinear transformation parameterized by S.

• Titans (Behrouz, Zhong, and Mirrokni 2024) further enhances
TTT by integrating momentum and weight decay into the
mini-batch SGD update.

39



Instead of performing (multiple) gradient descent to optimize
the objective, can we get a closed-form solution?

40



LongHorn

Longhorn (Liu et al. 2024) optimizes the following objective:

Lt(S) = ∥S − St−1∥2
F︸ ︷︷ ︸

D(S,St−1)

−βt∥Skt − vt∥2︸ ︷︷ ︸
lt(S)

with a closed-form solution:

St = St−1
(

I − ϵtktk⊤
t

)
+ ϵtvtk⊤

t , ϵt =
βt

1 + βtk⊤
t kt

Key difference: DeltaNet’s βt does not depend on kt, while
Longhorn’s ϵt depends on kt.

41



Mesa layer

DeltaNet/Longhorn only considers the prediction error of the
current token, while Mesa layer (Oswald et al. 2024) considers the
prediction error of all historical tokens:

Lt(S) = ∥S − St−1∥2
F︸ ︷︷ ︸

D(S,St−1)

+
t∑

i=1
−βi∥Ski − vi∥2

︸ ︷︷ ︸
lt(S)

with a closed-form solution:

St = St−1 − βtPtkt (St−1kt − vt)
⊤

Pt = Pt−1 −
βtPt−1ktk⊤

t Pt−1
1 + βtk⊤

t Pt−1kt
where Pt is updated recursively using the Matrix Inversion Lemma:

(A + uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
42



DeltaNet/Longhorn vs. Mesa Layer

DeltaNet/Longhorn vs. Mesa Layer

• DeltaNet/Longhorn: Like Least Mean Square (LMS)
• Only considers current prediction error
• Simple and computationally efficient
• May require more iterations to converge

• Mesa Layer: Like Recursive Least Squares (RLS)
• Considers all historical prediction errors
• Optimal in terms of minimizing cumulative error
• Faster convergence but higher computational cost

43



Thanks!

44



References i

References

Arora, Simran et al. (2023). “Zoology: Measuring and
Improving Recall in Efficient Language Models”. In: CoRR
abs/2312.04927.
Behrouz, Ali, Peilin Zhong, and Vahab Mirrokni (2024).
Titans: Learning to Memorize at Test Time. arXiv:
2501.00663 [cs.LG]. url: https://arxiv.org/abs/2501.00663.
Bischof, Christian H. and Charles Van Loan (1985). “The WY
representation for products of householder matrices”. In:
SIAM Conference on Parallel Processing for Scientific Computing.
url: https://api.semanticscholar.org/CorpusID:36094006.

45

https://arxiv.org/abs/2501.00663
https://arxiv.org/abs/2501.00663
https://api.semanticscholar.org/CorpusID:36094006


References ii

Grazzi, Riccardo et al. (2024). “Unlocking State-Tracking in
Linear RNNs Through Negative Eigenvalues”. In: url:
https://api.semanticscholar.org/CorpusID:274141450.
Joffrain, Thierry et al. (2006). “Accumulating Householder
transformations, revisited”. In: ACM Trans. Math. Softw. 32,
pp. 169–179. url:
https://api.semanticscholar.org/CorpusID:15723171.
Katharopoulos, Angelos et al. (2020). “Transformers are rnns:
Fast autoregressive transformers with linear attention”. In:
International conference on machine learning. PMLR, pp. 5156–5165.
Liu, Bo et al. (2024). “Longhorn: State Space Models are
Amortized Online Learners”. In: ArXiv abs/2407.14207. url:
https://api.semanticscholar.org/CorpusID:271310065.

46

https://api.semanticscholar.org/CorpusID:274141450
https://api.semanticscholar.org/CorpusID:15723171
https://api.semanticscholar.org/CorpusID:271310065


References iii

Mereghetti, Carlo and Beatrice Palano (2000). “Threshold
circuits for iterated matrix product and powering”. In:
RAIRO Theor. Informatics Appl. 34, pp. 39–46. url:
https://api.semanticscholar.org/CorpusID:13237763.
Merrill, William, Jackson Petty, and Ashish Sabharwal (2024).
“The Illusion of State in State-Space Models”. In: ArXiv
abs/2404.08819. url:
https://api.semanticscholar.org/CorpusID:269149086.
Oswald, Johannes von et al. (2024). Uncovering
mesa-optimization algorithms in Transformers. arXiv:
2309.05858 [cs.LG]. url: https://arxiv.org/abs/2309.05858.

47

https://api.semanticscholar.org/CorpusID:13237763
https://api.semanticscholar.org/CorpusID:269149086
https://arxiv.org/abs/2309.05858
https://arxiv.org/abs/2309.05858


References iv

Peng, Bo et al. (2025). RWKV-7 ”Goose” with Expressive
Dynamic State Evolution. arXiv: 2503.14456 [cs.CL]. url:
https://arxiv.org/abs/2503.14456.
Schlag, Imanol, Kazuki Irie, and Jürgen Schmidhuber (2021).
“Linear Transformers Are Secretly Fast Weight
Programmers”. In: Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event. Ed. by Marina Meila and Tong Zhang. Vol. 139.
Proceedings of Machine Learning Research. PMLR, pp. 9355–9366.
Sun, Yu et al. (2024). “Learning to (Learn at Test Time):
RNNs with Expressive Hidden States”. In: ArXiv
abs/2407.04620. url:
https://api.semanticscholar.org/CorpusID:271039606.

48

https://arxiv.org/abs/2503.14456
https://arxiv.org/abs/2503.14456
https://api.semanticscholar.org/CorpusID:271039606


References v

Wang, Ke Alexander, Jiaxin Shi, and Emily B. Fox (2025).
Test-time regression: a unifying framework for designing
sequence models with associative memory. arXiv:
2501.12352 [cs.LG]. url: https://arxiv.org/abs/2501.12352.
Yang, Songlin, Jan Kautz, and Ali Hatamizadeh (2024). Gated
Delta Networks: Improving Mamba2 with Delta Rule.
arXiv: 2412.06464 [cs.CL]. url: https://arxiv.org/abs/2412.06464.
Yang, Songlin et al. (2023). “Gated Linear Attention
Transformers with Hardware-Efficient Training”. In: CoRR
abs/2312.06635. doi: 10.48550/ARXIV.2312.06635. arXiv:
2312.06635. url: https://doi.org/10.48550/arXiv.2312.06635.

49

https://arxiv.org/abs/2501.12352
https://arxiv.org/abs/2501.12352
https://arxiv.org/abs/2412.06464
https://arxiv.org/abs/2412.06464
https://doi.org/10.48550/ARXIV.2312.06635
https://arxiv.org/abs/2312.06635
https://doi.org/10.48550/arXiv.2312.06635

	References

