Model summary

This work introduces Gated Slot Attention (GSA), enhancing Attention with Bounded Memory Control (ABC, Peng et al., 2022) with gating mechanisms and a hardware-efficient implementation for larger-scale language modeling.

Model	Self Attention	ABC	
Output		$\mathbf{o}_t = \widetilde{\mathbf{V}}^T \operatorname{softmax}($	$\widetilde{\mathbf{K}}_t^T \mathbf{q}_t) \in \mathbb{R}^d$
Key update	$\widetilde{\mathbf{K}}_t = \left[\widetilde{\mathbf{K}}_{t-1}; \mathbf{k}_t\right]$	$\widetilde{\mathbf{K}}_t = \widetilde{\mathbf{K}}_{t-1} + \boldsymbol{\phi}_t \otimes \mathbf{k}_t$	$\widetilde{\mathbf{K}}_t = \mathrm{Diag}(\mathbf{K})$
Key size	Linear ($t \times d$)	Constant ($m \times d$)	Со
Value update	$\widetilde{\mathbf{V}}_t = \left[\widetilde{\mathbf{V}}_{t-1}; \mathbf{v}_t\right]$	$\widetilde{\mathbf{V}}_t = \widetilde{\mathbf{V}}_{t-1} + \boldsymbol{\phi}_t \otimes \mathbf{v}_t$	$\widetilde{\mathbf{V}}_t = \mathrm{Diag}(\mathbf{v})$
Value size	Linear ($t \times d$)	Constant ($m \times d$)	Со

Table 1. Comparison of Different Attention Mechanism Update Rules

- Attention has unbounded memory size: quadratic time complexity and linear space complexity.
- ABC and GSA operate with a fixed memory size: linear time complexity and constant space complexity.
- GSA demonstrates improved state efficiency, achieving comparable or superior performance with a smaller state size, even in **recall-intensive tasks**. A smaller state size is critical for enhancing **inference efficiency**.
- GSA outperforms ABC in language modeling by a large margin thanks to the gating mechanism.
- GSA retains the softmax operator, making them well-suited for "fine-tuning pretrained transformers to **RNNs**" scenarios, thereby reducing the cost of training from scratch.

ABC and GSA as two-pass (gated) linear attention

Definitions	
Linear Attention (LA)	$LA(\{q_i, k_i, v_i\}_{i=1}^T)$:
	$\mathbf{S}_t = \mathbf{S}_{t-1} + \mathbf{k}_t \otimes \mathbf{v}_t \in \mathbb{R}^{d \times d}$
	$\boldsymbol{o}_t = \mathbf{S}_t^T \boldsymbol{q}_t \in \mathbb{R}^d$
Gated Linear Attention (GLA)	$\operatorname{GLA}(\{\boldsymbol{q}_i, \boldsymbol{k}_i, \boldsymbol{v}_i, \boldsymbol{\alpha}_i, \boldsymbol{\beta}_i\}_{i=1}^T) = \{\boldsymbol{o}_i\}_{i=1}^T$:
	$\mathbf{S}_t = \mathbf{G}_t \odot \mathbf{S}_{t-1} + \mathbf{k}_t \otimes \mathbf{v}_t \in \mathbb{R}^{d \times d}$, $\mathbf{G}_t = \mathbf{\alpha}_t \otimes \mathbf{A}_t$
	$\boldsymbol{o}_t = \mathbf{S}_t^T \boldsymbol{q}_t \in \mathbb{R}^d$
Two-Pass Forms	
ABC	$\{o'_i\}_{i=1}^T = LA(\{q_i, k_i, \phi_i\}_{i=1}^T)$
	$\{\boldsymbol{o}_i\}_{i=1}^T = \mathrm{LA}(\{\mathrm{softmax}(\boldsymbol{o}'_i), \boldsymbol{\phi}_i, \boldsymbol{v}_i\}_{i=1}^T)$
GSA	$\{\boldsymbol{o}_t'\}_{t=1}^T = \operatorname{GLA}(\{\boldsymbol{q}_t, \boldsymbol{k}_t, 1 - \boldsymbol{\alpha}_t, \boldsymbol{\alpha}_t, \boldsymbol{1}\}_{t=1}^T)$
	$\{\boldsymbol{o}_t\}_{t=1}^T = \operatorname{GLA}(\{\operatorname{softmax}(\boldsymbol{o}_t'), 1 - \boldsymbol{\alpha}_t, \boldsymbol{v}_t, \boldsymbol{1}, \boldsymbol{\alpha}_t\}_{t=1}^T)$

We can use the flash-linear-attention implementations for hardware-efficient training!

Gated Slot Attention for Efficient Linear-Time Sequence Modeling

Yu Zhang ∀ Songlin Yang ∀ Ruijie Zhu Yue Zhang Leyang Cui Yiqiao Wang Bolun Wang Freda Shi Bailin Wang Wei Bi Peng Zhou Guohong Fu

🗘 https://github.com/sustcsonglin/flash-linear-attention 🛛 😣 https://huggingface.co/fla-hub yzhang.cs@outlook.com yangs166@mit.edu 🖌 Equal contribution

Model Architecture

GSA

 $(\boldsymbol{\alpha}_t)\widetilde{\mathbf{K}}_{t-1} + (1-\alpha_t)\otimes \mathbf{k}_t$ onstant $(m \times d)$ $(\boldsymbol{\alpha}_t) \widetilde{\mathbf{V}}_{t-1} + (1 - \alpha_t) \otimes \mathbf{v}_t$

onstant $(m \times d)$

 $t \otimes \boldsymbol{\beta}_t \in \mathbb{R}^{d \times d}$

(a) The recurrent representation of GSA. \longrightarrow means taking x_t as input.

Table 2. Ablation study results for 340M models trained on 10B Slimpajama tokens.

Gating & Slots		Non-linearity	
GSA w/ 64 slots	13.51	- softmax	14.03
w/o decay (ABC)	16.94	$-\operatorname{softmax} + \operatorname{Swish}$	13.71
w/ data-independent decay	15.83	$-\operatorname{softmax} + \operatorname{ReLU}$	13.69
w/ 32 slots	13.74	$-\operatorname{softmax} + \operatorname{ReLU}^2$	13.95
w/ 128 slots	13.46		

NeurIPS 2024, Vancouver, Canada

(b) The backbone of our proposed GSA models.

Ablation study

	State size	Lamb.	Wiki.	ARC_e	ARC_c	Hella.	Lamb.	PIQA	Wino.	Δυσ
	JUALE SIZE	ppl_\downarrow	ppl_\downarrow	acc	acc _n	acc _n	acc	acc	acc	Avg.
2.7B para	ameters with	100B t	training	tokens,	L=32,	d=2,56	50			
Xfmr++	N/A	10.7	15.2	59.8	27.5	54.2	52.3	72.7	56.2	53.8
Mamba	64Ld	13.6	15.9	60.7	29.8	53.9	46.4	72.8	53.9	52.9
RetNet	$512 \times Ld$	11.9	15.8	59.6	28.1	54.0	49.6	72.3	53.8	52.9
GLA	$256 \times Ld$	12.4	15.5	59.2	29.9	54.0	50.4	71.7	55.7	53.5
HGRN2	$128 \times Ld$	8.8	14.6	60.8	30.3	58.7	55.4	73.0	54.2	55.4
GSA	$128 \times Ld$	9.8	14.8	61.9	30.7	57.0	52.7	73.5	56.0	55.3

Figure 2. Results on the synthet MQAR task. We adopt the mo challenging settings in Arora et 2023., utilizing a sequence len of 512 and 64 key-value pairs.

Table 5. Tenomance companson across various 7D models.												
	Size	Tokens	ARC_e	ARC_c	Hella.	PIQA	Wino.	NQ	TriviaQA	BBH	MMLU	Δνσ
Shot(s)			0	0	0	0	0	5	5	3	5	πvg.
Models trained from scratch (for reference)												
RWKV6	7B	1.4T	73.6	44.0	75.2	78.4	68.5	20.9	59.5	23.4	43.9	54.1
Mistral	7B	?	80.8	54.0	81.1	80.6	74.0	29.7	70.3	56.5	62.4	65.5
Models f	 inetur	ned from	n Mistr	al 7B								
SUPRA	7B	+20B	74.6	42.3	74.8	80.1	67.4	-	_	_	28.0	_
$RetNet^\dagger$	7B	+20B	73.3	39.9	72.9	77.8	66.1	16.2	43.0	8.7	26.1	47.1
GLA^\dagger	7B	+20B	74.6	44.0	75.9	79.2	69.5	22.2	57.8	20.8	28.4	52.5
GSA [†]	7B	+20B	75.9	43.9	76.5	78.7	70.1	23.4	60.7	23.5	32.4	53.9

Language Modeling and Common-Sense Reasoning Performance

Recall-intensive Task Performance

*		Figure	3. Re	esults on	the recall-	intensi	ve tasks.		
		State size	FDA	SWDE	SQuAD	NQ	TriviaQA	Drop	Avg.
	1.3B par	ams / 100E	3 toke	ens, L=24	4, d=2048				
	Xfmr++	N/A	46.0	29.2	41.0	24.8	58.8	21.3	36.9
Λ	Mamba	$64 \times Ld$	13.9	25.4	33.2	18.5	53.5	21.7	27.7
mba	RetNet	$512 \times Ld$	21.2	27.2	34.0	15.5	52.7	20.0	28.4
A	GLA	$256 \times Ld$	26.7	30.6	34.8	21.5	56.0	19.1	31.4
RN2	HGRN2	$128 \times Ld$	9.9	23.1	32.0	16.4	55.2	19.1	25.9
512	GSA	$128 \times Ld$	23.6	29.8	36.0	23.2	57.0	20.9	31.8
	2.7B par	ams / 100E	3 toke	ens, L=32	2, d=2560				
etic	Xfmr++	N/A	62.3	30.9	44.3	29.3	61.8	21.4	41.7
ost	Mamba	$64 \times Ld$	21.5	26.7	34.2	21.2	57.0	22.2	30.5
t al.	RetNet	$512 \times Ld$	24.1	26.1	36.4	20.4	57.3	21.8	31.0
ngth	GLA	$256 \times Ld$	30.3	35.5	36.8	23.3	58.2	21.8	34.3
•	HGRN2	$128 \times Ld$	15.0	29.9	35.1	17.0	59.8	20.0	29.5
	GSA	$128 \times Ld$	39.1	33.5	39.0	26.9	60.8	19.9	36.5

Finetuning Pretrained Transformers to RNNs

Table 3 Performance comparison across various 7R models