
Gated Linear Recurrence for Efficient
Sequence Modeling

Songlin Yang

MIT

April 2024



Introduction



Is attention all you need?



Issues with Transformers

Training: quadratic complexity
Long sequence training be-
comes a challenge.

Inference: KV cache grows lin-
early w.r.t. generation length
High memory cost



Revisiting RNNs

Training: linear complexity (but not necessarily fast on GPUs)

Inference: constant memory



Why did transformers dethrone RNNs?

▶ Better performance across different tasks and modalities.

▶ More GPU-friendly.



Research questions

How to make RNNs more performant?

How to improve RNNs’ training efficiency on hardware?



Research questions

How to make RNNs more performant?

▶ State expansion: Increase the recurrent state size

▶ Selection mechanism: Better exploit fixed-size states by
selectively retaining information.



Research questions

How to improve RNNs’ training efficiency on hardware?

▶ Linearization: Linear recurrence could be parallelized in the
sequence dimension.

▶ Structured state expansion: Outer product-based state
expansion via the linear attention mechanism



Contributions

▶ Flash Linear Attention Library ©

▶ I/O-aware efficient implementation for linear attention

▶ Incorporate selection mechanism into 2D linear RNNs
▶ Gated linear attention (GLA) and HGRN2 perform comparably

to LLaMa architecture transformer in language modeling.
▶ Efficient chunkwise algorithm for hardware-efficient training.

https://github.com/sustcsonglin/flash-linear-attention


Linear attention: RNNs with 2D hidden state



Recap: softmax attention

Parallel form for training:

Q,K ,V = XWQ ,XWK ,XWV ∈ RL×d

O = softmax
(
(QK⊺)⊙M

)
V ∈ RL×d



Recap: softmax attention

Iterative form for inference:

qt , kt , vt = xtWQ , xtWK , xtWV ∈ R1×d

ot =

∑t
i=1 exp(qtk

⊺
i )vi∑t

i=1 exp(qtk
⊺
i )

=
exp(qtK

T
1:t)V1:t

exp(qtKT
1:t)

∈ R1×d

Need access to all past keys and values (i.e., KV cache)



Linear attention [Katharopoulos et al., 2020]

Replace exp(qtk
⊺
i ) with a kernel k(x , y) with an associated feature

map ϕ (i.e., k(x , y) = ⟨ϕ(x), ϕ(y)⟩)

ot =

∑t
i=1 ϕ(qt)ϕ(ki )

⊺vi∑t
i=1 ϕ(qt)ϕ(ki )

⊺
=

ϕ(qt)
∑t

i=1 ϕ(ki )
⊺vi

ϕ(qt)
∑t

i=1 ϕ(ki )
⊺
.

Prefix sum could be parallelized via the parallel scan algorithm



Linear attention [Katharopoulos et al., 2020]

ot =

∑t
i=1 ϕ(qt)ϕ(ki )

⊺vi∑t
i=1 ϕ(qt)ϕ(ki )

⊺
=

ϕ(qt)
∑t

i=1 ϕ(ki )
⊺vi

ϕ(qt)
∑t

i=1 ϕ(ki )
⊺
.

Letting St =
∑t

i=1 ϕ(ki )
⊺vi and zt =

∑t
i=1 ϕ(ki )

⊺ where

St ∈ Rd×d , zt ∈ Rd×1, we can rewrite the above as an RNN,

St = St−1 + ϕ(kt)
⊺vt = St−1 + ϕ(kt)⊗ vt

zt = zt−1 + ϕ(kt)
⊺

ot =
ϕ(qt)St
ϕ(qt)zt

.



Linear attention [Katharopoulos et al., 2020]

St = St−1 + ϕ(kt)⊗ vt ∈ Rd×d

zt = zt−1 + ϕ(kt)
⊺ ∈ Rd×1

ot =
ϕ(qt)St
ϕ(qt)zt

∈ R1×d

▶ St could be regarded as the 2d RNN hidden state.

▶ State expansion through outer product ⊗.

▶ State reduction through matrix-vector multiplication.



Linear attention [Katharopoulos et al., 2020]

St = St−1 + ϕ(kt)⊗ vt ∈ Rd×d

zt = zt−1 + ϕ(kt) ∈ R1×d

ot =
ϕ(qt)St
ϕ(qt)z

⊺
t

∈ R1×d

▶ Denominator is often discarded for stability considerations
[Qin et al., 2022].

▶ ϕ could be simply set to the identity map
[Sun et al., 2023, Mao, 2022]. We then omit ϕ for simplicity.



Linear attention training

Parallel form:

O =
(
(QK⊺)⊙M

)
V

Due to existence of M, the training complexity is still quadratic.

Recurrent form:

St = St−1 + kt ⊗ vt ∈ Rd×d

ot = qtSt ∈ R1×d

▶ Lack of parallelism in the sequence dimension.
▶ We need to store each step’s hidden state, which is memory

inefficient.
▶ The parallel scan algorithm is not suitable for linear attention

because of this.



Chunkwise linear attention [Hua et al., 2022]
Chunk Q,K ,V ,O to {Q[i ]}, {K[i ]}, {V[i ]}, {O[i ]}, each chunk is of
shape C × d where C is the chunk size

St = St−1 + kt ⊗ vt ∈ Rd×d

ot = qtSt ∈ R1×d

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

S[i ] := SiC is the last hidden state of the i-th chunk.



Chunkwise linear attention: Hidden state update

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

S[i+1] = S[i ] +

(i+1)C∑
j=iC+1

kj ⊗ vj︸ ︷︷ ︸
K⊺
[i ]
V[i ]

∈ Rd×d .

Aggregation of input at the chunk level through matmul in O(Ld2)
time



Chunkwise linear attention: inter-chunk computation of
output

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

O[i+1] = Q[i+1]S[i ]︸ ︷︷ ︸
inter-chunk:O inter

[i+1]

+
(
(Q[i+1]K

⊺
[i+1])⊙M

)
V[i+1]︸ ︷︷ ︸

intra-chunk:O intra
[i+1]

∈ RC×d

Current chunk’s query vectors attend to previous chunk’s last
hidden state to compute O inter in O(Ld2) time



Chunkwise linear attention: intra-chunk computation of
output

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

O[i+1] = Q[i+1]S[i ]︸ ︷︷ ︸
inter-chunk:O inter

[i+1]

+
(
(Q[i+1]K

⊺
[i+1])⊙M

)
V[i+1]︸ ︷︷ ︸

intra-chunk:O intra
[i+1]

∈ RC×d

Chunkwise self-attention-style computation of O intra in
O((L/C )C 2d) = O(LCd) time.

▶ Still linear when C is set to a small constant independent of L



Chunkwise linear attention

The chunkwise form reduces to

{
the recurrent form, if C = 1

the parallel form, if C = L



Flash Linear Attention:
Hardware-Efficient Linear Attention



Motivation

29 210 211 212 213 214 215

100

101

102

103

Sentence length

T
im

e
(m

s)

Running speed

FlashAttention-2 (CUDA) Chunkwise Linear Attention (Pytorch)

▶ For a regular 2K training length setting, chunkwise linear
attention is slower than (quadractic) FlashAttention2.



Flashattention is IO-aware

Figure: Copied from [Dao et al., 2022]

Attention operator is memory-bounded, FlashAttention reduces I/O
cost by

▶ kernel fusion

▶ recomputation to avoid materializing LxL attention matrix to
global memory



Basic of GPU concepts: streaming multiprocessors

GPUs have many threads executed in parallel; threads are grouped
into thread blocks, which execute on streaming multiprocessors
(SMs).



Basic of GPU concepts: tensor cores

Half-prevision matrix multiple is much faster (around 16x) on GPUs



Basic of GPU concepts: memory hierarchy



Flash linear attention (the non-materialization version)

Sequential

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

Load from HBM Store to HBM On-chip construct

Pros:

▶ S does not materialize to HBM, saving I/O cost and memory.

▶ Q[i ],K[i ],V[i ] are loaded only once to compute both O[i ] and
S[i ].



Flash linear attention (the non-materialization version)

Sequential

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

Load from HBM Store to HBM On-chip construct

Cons:

▶ Sequential computation, limited sequence-level parallelism.



Flash linear attention (the materialization version)

Sequential (step 1)
Chunkwise Parallel (step 2)

S[i−1] S[i ] S[i+1] S[i ] O inter
[i+1] O intra

[i+1]

K[i ] V[i ] K[i+1] V[i+1] Q[i+1] K[i+1] V[i+1]

Load from HBM Store to HBM

▶ Step1 in sequential: Compute and store hidden states.

▶ Step2 in parallel: For each chunk, load the previous chunk’s
last hidden state and compute the outputs.



Flash linear attention (the materialization version)

Sequential (step 1)
Chunkwise Parallel (step 2)

S[i−1] S[i ] S[i+1] S[i ] O inter
[i+1] O intra

[i+1]

K[i ] V[i ] K[i+1] V[i+1] Q[i+1] K[i+1] V[i+1]

Load from HBM Store to HBM

Pros:

▶ Less FLOPs spent on recurrence. Chunkwise parallel in the
second stage.



Flash linear attention (the materialization version)

Sequential (step 1)
Chunkwise Parallel (step 2)

S[i−1] S[i ] S[i+1] S[i ] O inter
[i+1] O intra

[i+1]

K[i ] V[i ] K[i+1] V[i+1] Q[i+1] K[i+1] V[i+1]

Load from HBM Store to HBM

Cons:

▶ Need to store hidden states to HBMs. More I/O costs and
memory usage.



Speed comparsion

29 210 211 212 213 214 215

100

101

102

103

Sentence length

T
im

e
(m

s)
Running speed

210 211 212
2−1

20

21

Sentence length

G
P
U
m
em

or
y
(G

B
)

Memory footprint

FlashAttention-2 (CUDA) FlashLinearAttention (w/ m. Triton)

FlashLinearAttention (w/o m. Triton) Chunkwise Linear Attention (Pytorch)

▶ Faster than flashattention2 even for short sequences (e.g., 1K).
▶ 2x-3x faster than the naive Pytorch implementation thanks to

the I/O-awareness.



Flash linear attention is open-sourced!
Our goal is to provide state-of-the-art linear attention
implementations under Huggingface model interface with
hardware-efficient Triton kernels. Current support:
▶ GLA [Yang et al., 2023]
▶ RetNet [Sun et al., 2023]
▶ Based linear attention [Arora et al., 2024]
▶ RWKV-v6 [Peng et al., 2024]
▶ HGRN2 [Qin et al., 2024]
▶ . . .

Figure: Star flash-linear-attention here if you’re interested ©

https://github.com/sustcsonglin/flash-linear-attention


Linear Attention with Selection Mechanism



Vanilla linear attention doesn’t perform well in language
modeling

Linear attention is fast, but what about the performance?

softmax FLASH cosformer 1+elu

22

24

26

28

22.4

25.92
26.53

27.44

P
er
pl
ex
it
y

Figure: Small-scale language modeling performance on Wiki103 reported
by [Qin et al., 2023].



Vanilla Linear Attention

St = IdSt−1 + ϕ(kt)⊗ vt ∈ Rd×d

The transition matrix Id ∈ Rd×d is the identity matrix. There is no
forgetting mechanism to erase irrelevant information!



Linear attention with decay: RetNet [Sun et al., 2023]

St = γIdSt−1 + kt ⊗ vt ∈ Rd×d

where γ ∈ (0, 1).

▶ Past information is decayed exponentially.

▶ Improved performance of language modeling.



Linear attention with decay: RetNet [Sun et al., 2023]

St = γIdSt−1 + kt ⊗ vt ∈ Rd×d

where γ ∈ (0, 1).

There is no selection mechanism to decide what information to
remember and what to forget.



Selection mechanism example: Gated Recurrent Unit
[Chung et al., 2014]

zt = σ (Wzxt + Uzht−1 + bz)

rt = σ (Wrxt + Urht−1 + br )

ĥt = ϕ (Whxt + Uh (rt ⊙ ht−1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt

▶ xt ∈ Rd : input vector

▶ ht ∈ Rd : hidden state

▶ rt ∈ (0, 1)d : update gate (i.e., forget gate)

▶ zt ∈ (0, 1)d : reset gate



Why is GRU training inefficient?

zt = σ (Wzxt + Uzht−1 + bz)

rt = σ (Wrxt + Urht−1 + br )

ĥt = ϕ (Whxt + Uh (rt ⊙ ht−1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt

zt , rt and h̃t nonlinearly depend on ht−1, which requires sequential
computation.



Solution: removing state-to-state dependencies

zt = σ (Wzxt + Uzht−1 + bz)

rt = σ (Wrxt + Urht−1 + br )

ĥt = ϕ (Whxt + Uh (rt ⊙ ht−1) + bh)

z and h̃ could be computed in parallel before the recurrence.

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt

Linear recurrence could be parallelized via the parallel scan
algorithm [Martin and Cundy, 2018].



HGRN [Qin∗, Yang∗ et al., 2023]

▶ Transformer-like architecture.

▶ Replace self-attention layers with gated linear recurrent layers
for fast token mixing.

▶ Channel mixing layers (i.e., GLU) can capture non-linear
dependencies between different time steps.



Data-dependent decay is important for linear RNNs

Most previous linear recurrent models use data-independent decay:

▶ S4 [Gu et al., 2022]

▶ S5 [Smith et al., 2023]

▶ Mega [Ma et al., 2022]

▶ LRU [Orvieto et al., 2023]

▶ RWKV-v4 [Peng et al., 2023]

▶ RetNet [Sun et al., 2023]

Most recent linear recurrent models use data-dependent decay:

▶ Mamba [Gu and Dao, 2023]

▶ GLA [Yang et al., 2023]

▶ Hawk and Griffin [De et al., 2024]

▶ RWKV-v6 [Peng et al., 2024]

▶ HGRN2 [Qin et al., 2024]



Linear attention with selection mechanism

Generalize selection mechanism to the 2D RNN case:

St = AtSt−1 + kt ⊗ vt ∈ Rd×d

The data-dependent transition matrices At ∈ [0, 1]d×d vary for each
time step.

Data-dependent

At = f (xt) for some function f with learnable parameters



Linear attention with selection mechanism

St = AtSt−1 + kt ⊗ vt ∈ Rd×d

Unroll:

St =
t−1∑
j=1

(
t∏

k=j+1

At)(kj ⊗ vt)

To make training efficient, it is necessary to calculate the cumulative
product of the transition matrices efficiently.



Linear attention with selection mechanism

St = AtSt−1 + kt ⊗ vt ∈ Rd×d

Unroll:

St =
t−1∑
j=1

(
t∏

k=j+1

At)(ϕ(kj)⊗ vt)

However, computing the cumulative matrix product with arbitrary
dense matrices At takes O(Ld3) time, making training expensive.



GLA [Yang∗, Wang∗ et al, 2023]: Gated linear attention
with diagonal transition matrix

St = Diag(αt)St−1 + kt ⊗ vt ∈ Rd×d

where αt ∈ [0, 1]d .

Cumulative product with diagonal matrices is very efficient to
compute in O(Ld).



Can we just use the FlashLinearAttention out of the box?

Sort of, but requires nontrivial modifications.



Chunkwise GLA training: hidden state update

Given the i-th chunk, denote

▶ (B[i ])j := βiC+j =
iC+j∏

k=iC+1

Diag(αk): cumulative product from

the start of the chunk

▶ γi := (β[i ])C : cumulative product for the entire chunk



Chunkwise GLA: hidden state update

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

S[i+1] =

γi+1︷ ︸︸ ︷ (i+1)C∏
j=iC+1

Diag(αj)

S[i ]

+

(i+1)C∑
j=iC+1

(i+1)C∏
m=j

Diag(αm)

 (kj ⊗ vj) ∈ Rd×d



Chunkwise GLA: hidden state update

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

S[i+1] =
(∏(i+1)C

j=iC+1Diag(αj)
)
S[i ]

+
∑(i+1)C

j=iC+1

(i+1)C∏
m=j

Diag(αm)

(kj︸ ︷︷ ︸
(kj/βj )γi+1

⊗vj) ∈ Rd×d



Chunkwise GLA: hidden state update

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

S[i+1] =

 (i+1)C∏
j=iC+1

Diag(αj)

S[i ]

+

(i+1)C∑
j=iC+1

(i+1)C∏
m=j

Diag(αm)

(kj ⊗ vj)︸ ︷︷ ︸
γi+1(K[i+1]/B[i+1])⊺V[i+1]

∈ Rd×d

Efficient chunk state update via matmul



Chunkwise GLA: output computation

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

O inter
[i+1] = (Q ⊙ B)[i+1]S[i ] ∈ RC×d

O intra
[i ] = P[i ]︸︷︷︸

RC×C

V[i ] ∈ RC×d

We could leverage tensor cores for the calculation.



Chunkwise GLA: output computation

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

P[i ] = (Q[i ] ⊙ B[i ])(K[i ]/B[i ])
⊺

Numerical unstable because B[i ] could be extremely small

▶ K[i ]/B[i ] would explode



Chunkwise GLA: output computation

S[i−1] S[i ] S[i+1]

O inter
[i+1] O intra

[i+1]O inter
[i ] O intra

[i ]

Q[i ] K[i ] V[i ] Q[i+1] K[i+1] V[i+1]

The numerical stable way to compute P[i ] is

(P[i ])mn =

{∑
(qiC+m ⊙ kiC+n ⊙ βiC+m/βiC+n), if m ≥ n

0, otherwise

We cannot use tensor cores here



Chunkwise GLA: secondary chunking for better use of
tensor cores

level tensor core
1 ✓
2 ✓
2
causal mask



GLA experiments

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc norm ↑ acc ↑ acc ↑ acc norm ↑

Random baseline - - - 25.0 25.0 50.0 25.0 25.0 -

340M parameters, 15B training tokens
Transformer++ 28.39 42.69 31.0 63.3 34.0 50.4 44.5 24.2 41.2
RetNet 32.33 49.19 28.6 63.5 33.5 52.5 44.5 23.4 41.0
Mamba 28.39 39.66 30.6 65.0 35.4 50.1 46.3 23.6 41.8
FLASH 28.83 49.84 29.4 64.6 34.4 51.1 45.9 23.5 41.5
GLA Transformer 28.65 43.35 30.3 64.8 34.5 51.4 45.1 22.7 41.5

1.3B parameters, 100B training tokens
Transformer++ 16.85 13.44 48.9 70.8 49.6 53.6 56.0 26.5 50.9
RetNet 18.64 17.27 43.3 70.0 47.3 52.5 54.8 25.6 48.9
Mamba 17.06 13.89 46.2 72.2 40.1 54.1 59.0 28.2 50.0
GLA Transformer 17.22 14.47 46.9 71.8 49.8 53.9 57.2 26.6 51.0



Length extrapolation experiment: 2K training length

0 5 10 15 20 25 30
6

7

8

9

10

Position bucket (K)

P
er
p
le
xi
ty

PG19

5 10 15 20
6

7

8

9

10

Position bucket (K)

SlimPajama

Xfmr++ (2K)

RetNet (2K)

Mamba (2K)

GLA (2K)

▶ Linear attention models (RetNet/GLA) have better length
extrapolation ability than Mamba under 2K training length.

▶ GLA is better than RetNet in longer sequences thanks to
selection mechanism.



Length extrapolation experiment: 8K training length

0 5 10 15 20 25 30

6

8

10

Position bucket (K)

P
er
p
le
xi
ty

PG19

5 10 15 20
6

7

8

9

10

Position bucket (K)

SlimPajama

Mamba (2K)

Mamba (8K)

GLA (2K)

GLA (8K)

▶ Training on longer sequences can improve the language
modeling performance for both Mamba and GLA.

▶ Mamba’s length extrapolation ability is greatly improved.
▶ Open question.
▶ Similar observation in LongMamba ©.

https://github.com/jzhang38/LongMamba


Length extrapolation experiment: 2x12K TBPTT training

0 5 10 15 20 25 30

6

8

10

Position bucket (K)

P
er
p
le
xi
ty

PG19

5 10 15 20
6

7

8

9

10

Position bucket (K)

SlimPajama

GLA∗ (12x2K)

GLA (8K)

▶ Train on 12 consecutive chunks (2K length each) using
truncated BPTT.

▶ Use the last hidden state of the previous chunk to initialize the
next chunk’s initial hidden state.

▶ Similar performance.
▶ Possibly save communication cost between multiple GPU

devices.



Training speed and memory usage

2048/8 4096/4 8192/2 16284/1
0

10

20

30

Training length/Batch size

T
ok
en
s
p
er

se
co
nd

(K
t/
s)

Training throughput

2048/8 4096/4 8192/2 16284/1
0

10

20

30

40

50

Training length/Batch size

G
ig
ab
yt
e
(G

B
)

GPU memory usage

Transformer++ Mamba
GLA (w/o m.) GLA (w/ m.)

Figure: Settings: 1.3B models on a single H100.

Mamba cannot use tensor cores for linear recurrence and has limited
tensor parallelism due to the use of single head.



HGRN2: GLA with RNN-inspired parameterization

GLA: St = Diag(αt)St−1 + ϕ(kt)⊗ vt ∈ Rd×d

ot = ϕ(qi )St ∈ Rd

HGRN2: St = Diag(ft)St−1 + (1− ft)⊗ vt ∈ Rd×d

ot = τ(gi )St ∈ Rd

HGRN1: st = ft ⊙ st−1 + (1− ft)⊙ vt ∈ Rd

ot = τ(gi )⊙ st ∈ Rd



HGRN2 experiment: state expansion ablation on the Pile

1 2 4 8 16 32 64 128
Expand Ratio

4.65

4.70

4.75

4.80

4.85

4.90
PP

L

Expansion ratio = head dimension of queries/keys
head dimension of HGRN1 = 1



HGRN2 experiment



Beyond diagonal transition matrix: identity plus low-rank
matrix

St = (I + wt ⊗ ut) St−1 + ϕ(kt)⊗ vt ∈ Rd×d

▶ Cumulative matrix product could be computed efficiently via
the WY representation [Bischof and Loan, 1985].

▶ The delta rule proposed in [Schlag et al., 2021] uses a special
form of this recurrence
▶ This involves the transition matrix I − ϕ(kt)⊗ ϕ(kt)
▶ On-going research: use delta rule to improve associative recall

with hardware-efficient training.



Hybrid model

Figure: Jamba architecture

Hybrid of gated linear recurrent
(Mamba) and attention layer

▶ Only 12.5% attention
layers are needed.

▶ Reduce KV cache size

Hardware-efficient training of
gated linear recurrent layers en-
ables models to train on more
tokens!

▶ LLaMa3: 15T tokens



Thank You



References I

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Alberti, S.,
Zinsley, D., Zou, J., Rudra, A., and Ré, C. (2024).
Simple linear attention language models balance the
recall-throughput tradeoff.
CoRR, abs/2402.18668.

Bischof, C. H. and Loan, C. V. (1985).
The wy representation for products of householder matrices.
In SIAM Conference on Parallel Processing for Scientific
Computing.

Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014).
Empirical evaluation of gated recurrent neural networks on
sequence modeling.
CoRR, abs/1412.3555.



References II

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. (2022).
Flashattention: Fast and memory-efficient exact attention with
io-awareness.
In NeurIPS.

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-Muraru,
G., Gu, A., Haroun, R., Berrada, L., Chen, Y., Srinivasan, S.,
Desjardins, G., Doucet, A., Budden, D., Teh, Y. W., Pascanu,
R., de Freitas, N., and Gulcehre, C. (2024).
Griffin: Mixing gated linear recurrences with local attention for
efficient language models.
ArXiv, abs/2402.19427.

Gu, A. and Dao, T. (2023).
Mamba: Linear-time sequence modeling with selective state
spaces.



References III

Gu, A., Goel, K., and Ré, C. (2022).
Efficiently modeling long sequences with structured state spaces.

In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Hua, W., Dai, Z., Liu, H., and Le, Q. V. (2022).
Transformer quality in linear time.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G.,
and Sabato, S., editors, International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning Research,
pages 9099–9117. PMLR.



References IV

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
(2020).
Transformers are rnns: Fast autoregressive transformers with
linear attention.
In International conference on machine learning, pages
5156–5165. PMLR.

Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G., May,
J., and Zettlemoyer, L. (2022).
Mega: Moving average equipped gated attention.
CoRR, abs/2209.10655.

Mao, H. H. (2022).
Fine-tuning pre-trained transformers into decaying fast weights.
In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 10236–10242, Abu Dhabi,
United Arab Emirates. Association for Computational
Linguistics.



References V

Martin, E. and Cundy, C. (2018).
Parallelizing linear recurrent neural nets over sequence length.
In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gülçehre, Ç.,
Pascanu, R., and De, S. (2023).
Resurrecting recurrent neural networks for long sequences.
In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S.,
and Scarlett, J., editors, International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA,
volume 202 of Proceedings of Machine Learning Research,
pages 26670–26698. PMLR.



References VI

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho, S.,
Cao, H., Cheng, X., Chung, M., Grella, M., V., K. K. G., He,
X., Hou, H., Kazienko, P., Kocon, J., Kong, J., Koptyra, B.,
Lau, H., Mantri, K. S. I., Mom, F., Saito, A., Tang, X., Wang,
B., Wind, J. S., Wozniak, S., Zhang, R., Zhang, Z., Zhao, Q.,
Zhou, P., Zhu, J., and Zhu, R. (2023).
RWKV: reinventing rnns for the transformer era.
CoRR, abs/2305.13048.

Peng, B., Goldstein, D., Anthony, Q., Albalak, A., Alcaide, E.,
Biderman, S., Cheah, E., Ferdinan, T., Hou, H., l aw Kazienko,
P., Kranthikiran, G., Koco’n, J., Koptyra, B., Krishna, S.,
McClelland, R., Muennighoff, N., Obeid, F., Saito, A., Song, G.,
Tu, H., Wo’zniak, S., Zhang, R., Zhao, B., Zhao, Q., Zhou, P.,
Zhu, J., and Zhu, R.-J. (2024).
Eagle and finch: Rwkv with matrix-valued states and dynamic
recurrence.



References VII

Qin, Z., Han, X., Sun, W., Li, D., Kong, L., Barnes, N., and
Zhong, Y. (2022).
The devil in linear transformer.
arXiv preprint arXiv:2210.10340.

Qin, Z., Yang, S., Sun, W., Shen, X., Li, D., Sun, W., and
Zhong, Y. (2024).
Hgrn2: Gated linear rnns with state expansion.

Qin, Z., Yang, S., and Zhong, Y. (2023).
Hierarchically gated recurrent neural network for sequence
modeling.
CoRR, abs/2311.04823.



References VIII

Schlag, I., Irie, K., and Schmidhuber, J. (2021).
Linear transformers are secretly fast weight programmers.
In Meila, M. and Zhang, T., editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 9355–9366. PMLR.

Smith, J. T. H., Warrington, A., and Linderman, S. W. (2023).
Simplified state space layers for sequence modeling.
In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J., Wang,
J., and Wei, F. (2023).
Retentive network: A successor to transformer for large
language models.
arXiv preprint arXiv:2307.08621.



References IX

Yang, S., Wang, B., Shen, Y., Panda, R., and Kim, Y. (2023).
Gated linear attention transformers with hardware-efficient
training.
CoRR, abs/2312.06635.


