
What’s Next for Mamba?
Towards More Expressive Recurrent Update Rules

Songlin Yang

MIT CSAIL

January 2025

Introduction

Foundation Model’s Context Length grows rapidly

Issues with Transformers

▶ Training: quadratic time complexity
▶ Expensive for long sequence modeling (e.g., video or DNA

modeling)
▶ Inference: linear memory complexity

▶ Requires storing KV cache for each token
▶ High memory burden.

Revisiting RNNs

▶ Training: linear complexity, however, traditional RNNs are not
parallelizable.

▶ Inference: constant memory

Modern linear recurrent models

Use linear recurrence for parallel training

▶ Gated linear RNNs (HGRN, Griffin, ...)
▶ State-space models (S4, Mamba, ...)
▶ Linear attention (RetNet, GLA, xLSTM, DeltaNet, ...)

Modern linear recurrent models

Use linear recurrence for parallel training

▶ Gated linear RNNs (HGRN, Griffin, ...)
▶ State-space models (S4, Mamba, ...)
▶ Linear attention (RetNet, GLA, xLSTM, DeltaNet, ...)

Mamba2 is more similar to linear attention than state-space
models!!

Hybrid linear and softmax attention can achieve GPT-4o
level performance

MiniMax-01 (MiniMax et al. 2025) used
▶ Hybrid attention: 7/8 linear attention layers + 1/8 softmax

attention layer
▶ Lightning attention (Qin et al. 2024b): simple linear attention

with data-independent decay

Linear attention background

Linear attention = standard attention - softmax

Softmax attention:

Parallel training : O = softmax(QK⊤ ⊙ M)V ∈ RL×d

Iterative inference : ot =
t∑

j=1

exp(q⊤
t kj)∑t

l=1 exp(q⊤
t kl)

vj ∈ Rd

where M ∈ RL×L is the casual mask:

Mi,j =

{
−∞ if j > i
1 if j ≤ i

Linear attention = standard attention - softmax

Linear attention (Katharopoulos et al. 2020):

Parallel training : O = softmax(QK⊤ ⊙ M)V ∈ RL×d

Iterative inference : ot =
t∑

j=1

exp(q⊤
t kj)∑t

l=1 exp(q⊤
t kl)

vj ∈ Rd

where the denominator is harmful for linear attention’s training
stability and performance (Qin et al. 2022). Therefore, nearly all
recent linear attention models remove this normalization term.

Linear attention = standard attention - softmax

Linear attention (Katharopoulos et al. 2020):

Parallel training : O = softmax(QK⊤ ⊙ M)V ∈ RL×d

Iterative inference : ot =
t∑

j=1

exp(q⊤
t kj)∑t

l=1 exp(q⊤
t kl)

vj ∈ Rd

We abuse the notation M to denote the causal mask for both
softmax and linear attention. Here we have:

Mi,j =

{
0 if j > i
1 if j ≤ i

Linear attention = Linear RNN + matrix-valued hidden
states

ot =
t∑

j=1
(q⊤

t kj)vj

=
t∑

j=1
vj(k⊤

j qt) k⊤
j qt = q⊤

t kj ∈ R

= (
t∑

j=1
vjk⊤

j)︸ ︷︷ ︸
St∈Rd×d

qt By associativity

Linear attention = Linear RNN + matrix-valued hidden
states

Let St =
∑t

j=1 vjk⊤
j ∈ Rd×d be the matrix-valued hidden state,

then:
St = St−1 + vtk⊤

t ∈ Rd×d

ot = Stqt ∈ Rd

▶ Linear attention implements elementwise linear recurrence.
▶ Linear attention has a matrix-valued hidden state,

significantly increasing the state size.

Challenges in linear attention training: the parallel form

O = (QK⊤ ⊙ M)V ∈ RL×d

▶ Still quadratic in sequence length.

Challenges in linear attention training: the recurrent form

St = St−1 + vtk⊤
t ∈ Rd×d

ot = Stqt ∈ Rd

▶ Sequential computation limits parallelization opportunities
▶ Poor GPU utilization due to lack of matrix-multiply

operations (even with parallel scan algorithms)

Challenges in linear attention training: the recurrent form

St = St−1 + vtk⊤
t ∈ Rd×d

ot = Stqt ∈ Rd

▶ Sequential computation limits parallelization opportunities
▶ Poor GPU utilization due to lack of matrix-multiply

operations (even with parallel scan algorithms)

Hardware-efficient training with chunkwise parallel form

▶ Sequence of length L divided into L/C chunks of size C
▶ Compute only the last hidden state of each chunk.
▶ Compute the output from two parts:

▶ Historical context: using recurrent form
▶ Local context: using parallel form

Hardware-efficient training with chunkwise parallel form
▶ Sequence of length L divided into L/C chunks of size C
▶ Compute only the last hidden state of each chunk.
▶ Compute the output from two parts:

▶ Historical context: using recurrent form
▶ Local context: using parallel form

▶ When C = 1, it reduces to recurrent form; when C = L, it
reduces to parallel form.

▶ Chunkwise form is NOT an approximation, it computes the
exact same output.

Notation:

S[i] := SiC ∈ Rd×d (Chunk-level hidden state)
□[i] = □iC+1:(i+1)C ∈ RC×d (Matrix block for chunk i)

for □ ∈ {Q,K,V,O}

Chunkwise parallel form: hidden state update

S[t+1] = S[t]︸︷︷︸
Rd×d

+ V⊤
[t]︸︷︷︸

Rd×C

K[t]︸︷︷︸
RC×d

∈ Rd×d (Matrix Form)

Chunkwise parallel form: parallel output computation

O[t] =

RC×d︷︸︸︷
Q[t]

Rd×d︷︸︸︷
S⊤
[t]︸ ︷︷ ︸

inter-chunk:Ointer
[t]

+(

RC×C︷ ︸︸ ︷
Q[t]K⊤

[t] ⊙ M)

RC×d︷︸︸︷
V[t]︸ ︷︷ ︸

intra-chunk:Ointra
[t]

∈ RC×d (Matrix Form)

Chunkwise parallel form

▶ Total complexity: O(Ld2 + LdC), subquadratic in sequence
length when C is set small.

▶ C is set to {64, 128, 256} in practice.
▶ Can be extended to linear attention with decay and delta rule

(which we will discuss later).
▶ The de facto standard for training modern linear attention

models (e.g., Mamba2, Based, GLA, DeltaNet, Lightning
Attention, mLSTM · · ·)

Flash linear attention

I/O optimization significantly improves the wall-clock time.

Flash linear attention library

The Flash Linear Attention library provides hardware-efficient
implementation of various linear attention models.
▶ RetNet, GLA, Based, HGRN2, RWKV6, GSA, Mamba2,

DeltaNet, Gated DeltaNet, RWKV7 ...

Linear attention is not enough

St = St−1 + vtk⊤
t ∈ Rd×d

ot = Stqt ∈ Rd

▶ Instability: the hidden state value could explode due to
cumulative sum without decay

▶ Poor performance: vanilla linear attention models
significantly underperform Transformers in language modeling
perplexity

A simple fix: linear attention with data-independent decay

St = γSt−1 + vtk⊤
t ∈ Rd×d

ot = Stqt ∈ Rd

▶ γ is a constant exponential decay factor 0 < γ < 1.
▶ Works well in practice: RetNet (Sun et al. 2023), Lightning

Attention (Qin et al. 2024b)
▶ Lacking selectivity: a potential issue.

A simple fix: linear attention with data-dependent decay

St = γtSt−1 + vtk⊤
t ∈ Rd×d

ot = Stqt ∈ Rd

▶ γt ∈ (0, 1) is a data-dependent decay term
▶ Enables dynamic control of memory retention/forgetting

based on input data.
▶ Examples: Mamba2 (Dao and Gu 2024), mLSTM (Beck et al.

2024), Gated Retention (Sun et al. 2024b).

The parallel form for linear attention with decay

St = γtSt−1 + vtk⊤
t ∈ Rd×d

ot = Stqt ∈ Rd

Linear attention with decay has the following parallel form:

O = (QK⊤ ⊙ D)V ∈ RL×d

Di,j =


∏j

m=i+1 γm if i < j
1 if i = j
0 otherwise

Here, the equivalence of the recurrent and the parallel form is also
known as state space duality in Mamba2 (Dao and Gu 2024).

The chunkwise parallel form for linear attention with decay

St = γtSt−1 + vtk⊤
t ∈ Rd×d ot = Stqt ∈ Rd

Linear attention with decay has the following chunkwise form:

S[t] = βtCS[t−1] + (V[t] ⊙
βtC
β[t]

[:, None])⊤K[t] ∈ Rd×d

O[t] = (Q[t]S⊤
[t])⊙ β[t][:, None]︸ ︷︷ ︸

inter-chunk

+(Q[t]K⊤
[t] ⊙ D[t])V[t]︸ ︷︷ ︸

intra-chunk

∈ RC×d

where
▶ β[t] ∈ RC represents the cumulative decay values within chunk

t, where the i-th element is (β[t])i = βtC+i =
∏tC+i

m=tC+1 γm ∈ R

▶ (D[t])i,j =


∏tC+j

m=tC+i+1 γm if i < j
1 if i = j
0 otherwise

∈ RC×C

▶ Reminder: S[t] := StC ∈ Rd×d. □[t] := □tC+1:(t+1)C ∈ RC×d

for □ ∈ {Q,K,V,O}.

The chunkwise parallel form for linear attention with decay

St = γtSt−1 + vtk⊤
t ∈ Rd×d ot = Stqt ∈ Rd

Linear attention with decay has the following chunkwise form:

S[t] = βCtS[t−1] + (V[t] ⊙
βtC
β[t]

[:, None])⊤K[t] ∈ Rd×d

O[t] = (Q[t]S⊤
[t])⊙ β[t][:, None]︸ ︷︷ ︸

inter-chunk

+(Q[t]K⊤
[t] ⊙ D[t])V[t]︸ ︷︷ ︸

intra-chunk

∈ RC×d

▶ Preserves matrix-multiply structure with minimal overhead
when incorporating decay

▶ As fast as vanilla linear attention’s chunkwise form
▶ Equivalent to Mamba2’s state space duality (SSD)

algorithm (Dao and Gu 2024)

Linear attention with more fine-grained decay

St = Gt ⊙ St−1 + vtk⊤
t ∈ Rd×d

ot = Stqt ∈ Rd

▶ Gt ∈ Rd×d is a fine-grained data-dependent gate matrix.
▶ Gt = βtα⊤

t enables rewriting recurrence into matrix-multiply
form (Yang et al. 2023), where βt,αt ∈ Rd are learnable
data-dependent vectors.

▶ Gt = exp(−(∆t1⊤)⊙ exp(A)) in Mamba1 (Gu and Dao
2023):
▶ A ∈ Rd×d is data-independent, ∆t ∈ Rd is data-dependent.
▶ Breaks down the outer product form and therefore lacks the

matrix-multiply form.
▶ Difficult to scale up the recurrent state size.

Linear attention with more fine-grained decay

St = Gt ⊙ St−1 + vtk⊤
t ∈ Rd×d

ot = Stqt ∈ Rd

▶ Gt ∈ Rd×d is a fine-grained data-dependent gate matrix.
▶ Gt = βtα⊤

t enables rewriting recurrence into matrix-multiply
form (Yang et al. 2023), where βt,αt ∈ Rd are learnable
data-dependent vectors.

▶ Gt = exp(−(∆t1⊤)⊙ exp(A)) in Mamba1 (Gu and Dao
2023):
▶ A ∈ Rd×d is data-independent, ∆t ∈ Rd is data-dependent.
▶ Breaks down the outer product form and therefore lacks the

matrix-multiply form.
▶ Difficult to scale up the recurrent state size.

Linear attention with more fine-grained decay

St = Gt ⊙ St−1 + vtk⊤
t ∈ Rd×d

ot = Stqt ∈ Rd

▶ Full form: Gt = βtα⊤
t

▶ Examples: Decaying fast weight (Mao 2022)
▶ Hardware-efficient training with chunkwise parallel form (Yang

et al. 2023).
▶ A simpler choice: Gt = 1α⊤

t by setting βt = 1
▶ Faster than the full form case, but still slower than linear

attention with scalar-valued decay (e.g., Lightning Attention,
Mamba2).

▶ Examples: GLA (Yang et al. 2023), RWKV6 (Peng et al.
2024), MetaLA (Chou et al. 2024), HGRN2 (Qin et al. 2024a),
GSA (Zhang et al. 2024)

Towards more expressive update rule

Linear attention: a fast weight programming perspective

The hidden state matrix St is a fast weight matrix that is updated
at each timestep:

St = St−1 + vtk⊤
t

The fast weight matrix is used to map inputs qt into outputs ot:

ot = Stqt

“Fast weights provide a neurally plausible way of imple-
menting the type of temporary storage that is required
by working memory, while slow weights capture more per-
manent associations learned over many experiences.” –
Geoffrey Hinton

The choice of update rule

Figure: The principle of Hebbian learning.

▶ Hebbian update rule: St = St−1 + vtk⊤
t

▶ Delta rule: St = St−1 − βt (St−1kt − vt) k⊤
t

▶ ...
Both Hebbian and delta update rules can be regarded as
optimizing online learning objective via single step of SGD.

Linear attention optimizes a negative linear inner product
loss via SGD

The objective predicts the target value vt by transforming the key
kt with S.

Lt(S) = −⟨Skt, vt⟩

Performing a single step of SGD:

St = St−1 − βt∇Lt(St−1)

= St−1 + βtvtk⊤
t

▶ Learning rate βt = 1 recovers vanilla linear attention.
▶ Mamba2’s update rule St = αtSt−1 + vtk⊤

t can be interpreted
as online SGD with weight decay αt.

DeltaNet optimizes a regression loss via SGD

Online regression loss is better for predicting vt from kt and St−1.

Lt(S) =
1
2∥Skt − vt∥2

Performing a single step of SGD:

St = St−1 − βt∇Lt(St−1)

= St−1 − βt (St−1kt − vt) k⊤
t

▶ When βt ∈ (0, 1), the DeltaNet update rule (Schlag, Irie, and
Schmidhuber 2021; Yang et al. 2024) is recovered.

DeltaNet performs better on in-context associative recall:
key intuitions

What is associative recall?
In psychology, associative memory is the ability to learn and re-
member relationships between unrelated items, such as remem-
bering someone’s name when seeing their face. This cognitive
mechanism allows us to form and retrieve connections between
distinct pieces of information. - Wikipedia

DeltaNet’s online regression loss directly optimizes the model’s
ability to predict vi from their corresponding key vectors ki at each
step, enhancing key-value associative recall (Liu et al. 2024).

DeltaNet performs better on in-context associative recall:
MQAR results

Multi-Query Associative Recall (MQAR, Arora et al. 2023)
A synthetic benchmark for testing in-context associative recall. Example:

▶ Given key-value pairs: “A 4 B 3 C 6 F 1 E 2”
▶ Query: “A ? C ? F ? E ? B ?”
▶ Expected output: “4, 6, 1, 2, 3”

64 128 256 5120

25

50

75

100

Model dimension

Ac
cu

ra
cy

(%
)

Sequence Length: 512, Key-Value Pairs: 64

DeltaNet
Mamba
GLA
RetNet
RWKV4
Hyena

Figure: Accuracy (%) on MQAR. DeltaNet achieves the perfect recall.

DeltaNet performs better on in-context associative recall:
MAD results

MAD (Poli et al. 2024) serves as a more comprehensive benchmark
suite than MQAR for evaluating in-context associative recall and
learning.

Model Compress Fuzzy In-Context Memorize Noisy Selective Average
Recall Recall Recall Copy

Transformer 51.6 29.8 94.1 85.2 86.8 99.6 74.5
Hyena 45.2 7.9 81.7 89.5 78.8 93.1 66.0
Multihead Hyena 44.8 14.4 99.0 89.4 98.6 93.0 73.2
Mamba 52.7 6.7 90.4 89.5 90.1 86.3 69.3
GLA 38.8 6.9 80.8 63.3 81.6 88.6 60.0
DeltaNet 42.2 35.7 100 52.8 100 100 71.8

Table: MAD benchmark results. DeltaNet achieves the best performance
in in-context associative recall and copy tasks, however, it somehow
underperforms in memorization and compression tasks.

Transformers and SSMs fall under TC0

Merrill, Petty, and Sabharwal 2024 identified two key approaches
for designing RNNs with computational power beyond TC0:
▶ Nonlinear Recurrence

+ Achieves expressiveness beyond TC0

- Inherently sequential, not parallelizable
▶ Linear Recurrence with Data-Dependent Nondiagonal

Transition Matrices
+ Theoretically parallelizable
- Could be computationally expensive with dense unstructured

transition matrices.

DeltaNet has more expressive transition matrix

St = St−1 − βt∇Lt(St−1)

= St−1 − βt (St−1kt − vt) k⊤
t

= St−1
(

I − βtktk⊤
t

)
+ βtvtk⊤

t

Generalized Householder (GH) transition matrix: I − βtktk⊤
t

▶ DeltaNet’s GH transition matrix is both data-dependent and
non-diagonal.

▶ Strictly more expressive than Mamba2 when GH has negative
eigenvalues - this allows DeltaNet to compute functions
beyond the TC0 complexity class (Grazzi et al. 2024; Merrill,
Petty, and Sabharwal 2024)

▶ The structured GH matrix form enables efficient chunkwise
training (Yang et al. 2024)

DeltaNet is strictly more expressive than SSMs

St = St−1 (I − βtktk⊤
t)︸ ︷︷ ︸

GH transition

+βtvtk⊤
t =

t∑
i=1

βivikt
i

t∏
j=i+1

(I − βjkjk⊤
j)︸ ︷︷ ︸

cumulative GH products


Key Properties:
▶ Expressiveness: When allowing negative eigenvalues in GH

matrices (Grazzi et al. 2024), the cumulative products of GH
matrices can represent any matrix with Euclidean norm < 1.

▶ Complexity Class: Cumulative products of general matrices
cannot be computed in TC0 (Mereghetti and Palano 2000).

▶ Conclusion: DeltaNet with negative eigenvalues has
expressiveness beyond TC0, strictly exceeding SSMs and
Transformer.

DeltaNet with negative eigenvalue has better state
tracking capability than Transformer and Mamba

Figure: This table is from Grazzi et al. 2024. DeltaNet has a strong state
tracking capability in parity checking and modular arithmetic.

Issues with DeltaNet

Despite strong performance on synthetic benchmarks like MQAR
and MAD, DeltaNet underperforms on real-world language
modeling tasks compared to models like Mamba2

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

Mamba 17.92 15.06 43.98 71.32 52.91 52.95 69.52 35.40 37.76 61.13 53.12
Mamba2 16.56 12.56 45.66 71.87 55.67 55.24 72.47 37.88 40.20 60.13 54.89
DeltaNet 17.71 16.88 42.46 70.72 50.93 53.35 68.47 35.66 40.22 55.29 52.14

Table: Performance comparison on language modeling and zero-shot
common-sense reasoning for 1.3B parameter models that are trained for
100B tokens.

Decay is crucial for forgetting irrelevant information!

Gated DeltaNet (Yang, Kautz, and Hatamizadeh 2024)

Gated DeltaNet combines the delta update rule in DeltaNet and
the gated update rule in Mamba2:

St = St−1
(
αt(I − βtktk⊤

t)
)
+ βtvtk⊤

t

▶ αt ∈ (0, 1) is parameterized the same as Mamba2.
▶ When αt = 1, Gated DeltaNet is equivalent to DeltaNet.
▶ When αt = 0, Gated DeltaNet clears the entire memory.
▶ Gated DeltaNet can be interpreted as optimizing the online

regression loss with weight decay.

Case study: Single Needle In a Haystack (S-NIAH)

S-NIAH is a benchmark suite from RULER (Hsieh et al. 2024) for
testing in-context associative recall capabilities through three
increasingly challenging subtasks.

Task Configurations

Subtask-1 Subtask-2 Subtask-3

Single NIAH type_key = word
type_value = number
type_haystack = repeat
~passkey retrieval

type_key = word
type_value = number
type_haystack = essay
~vanilla NIAH

type_key = word
type_value = uuid
type_haystack = essay

Table: Configurations for Single NIAH Task

Case study: Single Needle In a Haystack (S-NIAH)

S-NIAH-1: A pass-key retrieval task with synthetic context
Context:

A special magic number is hidden within a long text of repeated sentences.
Make sure to memorize it. I will quiz you about the number afterwards.
The grass is green. The sky is blue. The sun is yellow. Here we go. There
and back again. [....] One of the special magic numbers for flaky-celebrity
is: 1538552. The grass is green. The sky is blue. The sun is yellow. Here
we go. There and back again. [....]

Query: ”What is the special magic number for flaky-celebrity?”
Expected answer: ”1538552”

Case study: Single Needle In a Haystack (S-NIAH)

S-NIAH-1
(pass-key retrieval)

Model 1K 2K 4K 8K
DeltaNet 97.4 96.8 99.0 98.8
Mamba2 99.2 98.8 65.4 30.4
Gated DeltaNet 98.4 88.4 91.4 91.8

Decay hurts memory retention!
▶ Mamba2 significantly degrades with longer sequences
▶ DeltaNet maintains consistent performance
▶ Gated DeltaNet shows slight degradation

Case study: Single Needle In a Haystack (S-NIAH)
S-NIAH-2: number in a haystack
Context:

A special magic number is hidden within the following text. Make sure to
memorize it. I will quiz you about the number afterwards.
What hard liquor, cigarettes, heroin, and crack have in common is that
they’re all more concentrated forms of less addictive predecessors. Most if
not all the things we describe as addictive are. [....] One of the special
magic numbers for vague-ecology is: 6440561. And the scary thing is, the
process that created them is accelerating. We wouldn’t want to stop it. It’s
the same process that cures diseases: technological progress. Technological
progress means making things do more of what we want. When the thing
we want is something we want to want, we consider technological progress
good [....]
Query: ”What is the special magic number for vague-ecology?”
Expected answer: ”6440561”

▶ S-NIAH-2 is more challenging than S-NIAH-1, as the context
is drawn from real-world essays (Paul Graham Essays) rather
than synthetic text.

▶ Success on this task requires models to effectively filter out
irrelevant information while retaining the key number.

Case study: Single Needle In a Haystack (S-NIAH)

S-NIAH-2
(number in haystack)

Model 1K 2K 4K 8K
DeltaNet 98.4 45.6 18.6 14.4
Mamba2 99.4 98.8 56.2 17.0
Gated DeltaNet 100.0 99.8 92.2 29.6

Data-dependent decay helps filter out irrelevant
information!
▶ DeltaNet’s performance drops significantly due to lack of

decay mechanism.
▶ Mamba2 shows comparable performance to S-NIAH-1 task.
▶ Gated DeltaNet demonstrates superior performance in

S-NIAH-2.

Case study: Single Needle In a Haystack (S-NIAH)

S-NIAH-3: uuid in a haystack
Context:

A special magic uuid is hidden within the following text. Make sure to
memorize it. I will quiz you about the uuid afterwards.
What hard liquor, cigarettes, heroin, and crack have in common is that
they’re all more concentrated forms of less addictive predecessors. Most if
not all the things we describe as addictive are. [....] One of the special
magic uuid for vague-ecology is: 8a14be62-295b-4715-8333-e8615fb8d16c.
And the scary thing is, the process that created them is accelerating. We
wouldn’t want to stop it. It’s the same process that cures diseases: techno-
logical progress. Technological progress means making things do more of
what we want. When the thing we want is something we want to want, we
consider technological progress good [....]
Query: ”What is the special magic uuid for vague-ecology?”
Expected answer: ”8a14be62-295b-4715-8333-e8615fb8d16c”

▶ S-NIAH-3 is more challenging than S-NIAH-2 as the value is a
uuid rather than a number.

Case study: Single Needle In a Haystack (S-NIAH)

S-NIAH-3
(uuid in haystack)

Model 1K 2K 4K
DeltaNet 85.2 47.0 22.4
Mamba2 64.4 47.6 4.6
Gated DeltaNet 86.6 84.2 27.6

Delta rule helps memorize more complex patterns!
▶ Mamba2’s performance drops significantly due to the lack of

delta rule.
▶ DeltaNet’s performance is similar to S-NIAH-2.
▶ Gated DeltaNet achieves the best performance in S-NIAH-3.

Gated DeltaNet and hybrid models

Figure: Gated DeltaNet and hybrid blocks. SWA stands for Sliding
Window Attention.

Zero-shot commonsense reasoning performance

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑

Recurrent models
RetNet 19.08 17.27 40.52 70.07 49.16 54.14 67.34 33.78 40.78 60.39 52.02
HGRN2 19.10 17.69 39.54 70.45 49.53 52.80 69.40 35.32 40.63 56.66 51.79
Mamba 17.92 15.06 43.98 71.32 52.91 52.95 69.52 35.40 37.76 61.13 53.12
Mamba2 16.56 12.56 45.66 71.87 55.67 55.24 72.47 37.88 40.20 60.13 54.89
DeltaNet 17.71 16.88 42.46 70.72 50.93 53.35 68.47 35.66 40.22 55.29 52.14
Gated DeltaNet 16.42 12.17 46.65 72.25 55.76 57.45 71.21 38.39 40.63 60.24 55.32

Attention or hybrid models
Transformer++ 18.53 18.32 42.60 70.02 50.23 53.51 68.83 35.10 40.66 57.09 52.25
Samba 16.13 13.29 44.94 70.94 53.42 55.56 68.81 36.17 39.96 62.11 54.00
Gated DeltaNet-H1 16.07 12.12 47.73 72.57 56.53 58.40 71.75 40.10 41.40 63.21 56.40
Gated DeltaNet-H2 15.91 12.55 48.76 72.19 56.88 57.77 71.33 39.07 41.91 61.55 56.18

Table: Performance comparison on language modeling and zero-shot
common-sense reasoning for 1.3B parameter models that are trained for
100B tokens.

Zero-shot long context understanding performance

Single-Doc QA Multi-Doc QA Summarization Few-shot Code Avg
Model NQA QQA MFQ HQA 2WM Mus GvR QMS MNs TRC TQA SSM LCC RBP

Recurrent models
RetNet 12.1 10.7 19.1 10.7 18.0 5.8 4.8 15.8 7.9 19.0 18.0 12.8 14.1 17.9 13.2
HGRN2 10.7 12.1 19.1 11.3 15.7 6.0 5.2 15.1 9.2 16.0 15.8 10.3 18.6 20.8 13.5
Mamba 13.0 10.1 20.4 10.1 16.7 6.0 7.2 15.9 8.4 23.1 21.9 11.2 17.9 19.0 14.6
DeltaNet 12.9 10.8 21.5 10.9 13.2 5.1 6.5 13.5 7.2 15.5 23.3 11.6 17.6 20.3 13.6
Mamba2 11.1 11.3 18.6 11.8 15.1 6.7 6.7 14.5 7.4 13.0 23.6 8.4 17.9 20.6 13.5
Gated DeltaNet 14.1 14.0 23.3 13.7 14.4 5.8 7.5 16.4 7.9 30.0 22.4 23.0 18.7 22.1 16.6

Attention or hyrbid models
Transformer++ 11.8 9.3 10.0 10.9 4.2 6.1 7.4 15.8 6.6 16.9 13.5 3.9 17.2 18.7 11.0
Samba 12.5 12.9 25.4 11.2 19.7 6.8 9.1 15.7 11.0 20.0 22.7 22.8 18.1 21.1 15.9
Gated DeltaNet-H1 14.5 12.3 26.6 12.6 23.6 6.1 9.1 16.1 12.8 33.5 23.9 26.8 15.5 19.2 17.8
Gated DeltaNet-H2 12.7 13.0 27.1 12.7 20.6 7.5 10.4 16.2 13.0 40.5 22.7 27.9 19.9 22.1 18.4

Table: Accuracy on 14 tasks from LongBench (Bai et al. 2023): Narrative
QA, QasperQA, MultiField QA, HotpotQA, 2WikiMulti QA, Musique,
GovReport, QMSum, MultiNews, TRec, Trivia QA, SamSum, LCC, and
RepoBench-P by order.

▶ Transformer performs poorly due to limited length
extrapolation without long sequence post-training.

Parallelizing DeltaNet (Yang et al. 2024)

St = St−1
(

I − βtktk⊤
t

)
+ βtvtk⊤

t

=
t∑

i=1

βivikt
i

t∏
j=i+1

(I − βjkjk⊤
j)︸ ︷︷ ︸

Pt
j


St and Pt := Pt

1 can be computed efficiently via the classical WY
representation (Bischof and Loan 1985):

Pt = I −
t∑

i=1
wik⊤

i , wt = βt

(
kt −

t−1∑
i=1

wi(k⊤
i kt)

)

St =
t∑

i=1
uik⊤

i , ut = βt

(
vt −

t−1∑
i=1

ui(k⊤
i kt)

)

Parallelizing DeltaNet (Yang et al. 2024)

Check out our paper or blogpost
(https://sustcsonglin.github.io/blog/2024/deltanet-2/) for more details.

Parallelizing DeltaNet (Yang et al. 2024)

Figure: Speed-up of the chunkwise parallel form vs. the recurrent form.

When increasing the head dimension and sequence length,
chunkwise implementation’s speed-up is more significant.

Chunkwise training for Gated DeltaNet

St = St−1
(
αt
(

I − βtktk⊤
t

))
+ βtvtk⊤

t

=
t∑

i=1
(βivik⊺

i

t∏
j=i+1

αj(I − βjkjk⊺
j)︸ ︷︷ ︸

defined as: Pt
i

)

allows for extended WY representation where γt :=
∏t

i=1 αi

Pt = γt

(
I −

t∑
i=1

wik⊺
i

)
, wt = βt

(
kt −

t−1∑
i=1

wi(k⊺
i kt)

)

St =
t∑

i=1

γi
γt

uik⊺
i , ut = βt

(
vt −

t−1∑
i=1

ui
γi
γt
(k⊺

i kt)

)

The overheads of gating term is negligible and Gated DeltaNet is
as fast as DeltaNet.

Chunkwise training for Gated DeltaNet

Figure: Training throughput of 1.3B models on a single H100.

▶ Gated DeltaNet is only slightly slower than Mamba2.
▶ Hybrid models have higher training throughput thanks to

highly optimized flashattention kernel with sliding window size
2K.

Chunkwise training for Gated DeltaNet

This chunkwise algorithm can be further extended to the following
linear recurrence with diagonal-plus-low-rank transition:

St = St−1(Dt +αtβ
⊤
t) + vtk⊤

t

▶ Dt ∈ Rd×d is a diagonal matrix. αt,βt ∈ Rd are vectors.
▶ RWKV-7 used such a linear recurrence and has been shown to

be effective.
▶ Fast implementation is available in the flash-linear-attention

library (https://github.com/fla-org/flash-linear-attention/
blob/main/fla/ops/rwkv7/chunk.py).

https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/rwkv7/chunk.py
https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/rwkv7/chunk.py

Going beyond online linear regression
objective

Going beyond online linear regression objective

Recall that DeltaNet optimizes the online linear regression loss:

Lt(S) =
1
2∥Skt − vt∥2

▶ This optimization objective assumes linear relationships in
historical data dependencies

▶ However, generative AI tasks involve complex, nonlinear
dependencies

▶ A linear regression loss may be insufficient to capture these
rich patterns.

Going beyond online linear regression objective

TTT (Sun et al. 2024a) extends this to a nonlinear regression loss:

Lt(S) =
1
2∥fS(kt)− vt∥2

where fS is a nonlinear transformation parameterized by S.
▶ TTT-linear: fS(x) = LN(Sx) + x where LN is layer

normalization
▶ TTT-MLP: fS(x) = LN(MLPS(x)) + x where S is MLP weight

matrix

Going beyond online linear regression objective

TTT (Sun et al. 2024a) extends this to a nonlinear regression loss:

Lt(S) =
1
2∥fS(kt)− vt∥2

where fS is a nonlinear transformation parameterized by S.
▶ The nonlinear transformations increase expressivity but break

the linear recurrence structure.
▶ Workaround: Use mini-batch updates by accumulating

gradients over B tokens before updating S (i.e., hybrid
intra-chunk linear + inter-chunk nonlinear).

Going beyond online linear regression objective

TTT (Sun et al. 2024a) extends this to a nonlinear regression loss:

Lt(S) =
1
2∥fS(kt)− vt∥2

where fS is a nonlinear transformation parameterized by S.
▶ Titans (Behrouz, Zhong, and Mirrokni 2024) further improves

TTT by incorporating momentum and weight decay into the
mini-batch SGD update.

Summary

▶ Modern RNNs through the lens of online learning:
▶ (Decaying) Linear attention (RetNet, Lightning Attention,

Mamba2, GLA, · · ·): negative inner-product loss
▶ (Gated) DeltaNet: linear regression loss
▶ TTT & Titans: nonlinear regression losses

▶ Gradient-based optimization techniques prove valuable:
▶ Weight decay enables effective forgetting (Mamba2, Gated

DeltaNet, · · ·)
▶ Momentum improves performance (Titans)

▶ Efficient hardware utilization via:
▶ Chunkwise training for linear attention.
▶ Hybrid linear/nonlinear approaches across chunks (TTT &

Titans)
▶ Promising future in bridging in-context meta learning and

RNN architectures

Thanks!

References I

Arora, Simran et al. (2023). “Zoology: Measuring and
Improving Recall in Efficient Language Models”. In: CoRR
abs/2312.04927.
Bai, Yushi et al. (2023). “LongBench: A Bilingual, Multitask
Benchmark for Long Context Understanding”. In: ArXiv
abs/2308.14508. url:
https://api.semanticscholar.org/CorpusID:261245264.
Beck, Maximilian et al. (2024). “xLSTM: Extended Long
Short-Term Memory”. In: The Thirty-eighth Annual Conference
on Neural Information Processing Systems. url:
https://openreview.net/forum?id=ARAxPPIAhq.
Behrouz, Ali, Peilin Zhong, and Vahab Mirrokni (2024). Titans:
Learning to Memorize at Test Time. arXiv: 2501.00663 [cs.LG].
url: https://arxiv.org/abs/2501.00663.

https://api.semanticscholar.org/CorpusID:261245264
https://openreview.net/forum?id=ARAxPPIAhq
https://arxiv.org/abs/2501.00663
https://arxiv.org/abs/2501.00663

References II
Bischof, Christian H. and Charles Van Loan (1985). “The WY
representation for products of householder matrices”. In: SIAM
Conference on Parallel Processing for Scientific Computing.
url: https://api.semanticscholar.org/CorpusID:36094006.
Chou, Yuhong et al. (2024). “MetaLA: Unified Optimal Linear
Approximation to Softmax Attention Map”. In: The
Thirty-eighth Annual Conference on Neural Information
Processing Systems. url:
https://openreview.net/forum?id=Y8YVCOMEpz.
Dao, Tri and Albert Gu (2024). “Transformers are SSMs:
Generalized Models and Efficient Algorithms Through
Structured State Space Duality”. In: Forty-first International
Conference on Machine Learning. url:
https://openreview.net/forum?id=ztn8FCR1td.
Grazzi, Riccardo et al. (2024). “Unlocking State-Tracking in
Linear RNNs Through Negative Eigenvalues”. In: url:
https://api.semanticscholar.org/CorpusID:274141450.

https://api.semanticscholar.org/CorpusID:36094006
https://openreview.net/forum?id=Y8YVCOMEpz
https://openreview.net/forum?id=ztn8FCR1td
https://api.semanticscholar.org/CorpusID:274141450

References III

Gu, Albert and Tri Dao (2023). “Mamba: Linear-Time
Sequence Modeling with Selective State Spaces”. In.
Hsieh, Cheng-Ping et al. (2024). “RULER: What’s the Real
Context Size of Your Long-Context Language Models?” In:
ArXiv abs/2404.06654. url:
https://api.semanticscholar.org/CorpusID:269032933.
Katharopoulos, Angelos et al. (2020). “Transformers are rnns:
Fast autoregressive transformers with linear attention”. In:
International conference on machine learning. PMLR,
pp. 5156–5165.
Liu, Bo et al. (2024). “Longhorn: State Space Models are
Amortized Online Learners”. In: ArXiv abs/2407.14207. url:
https://api.semanticscholar.org/CorpusID:271310065.

https://api.semanticscholar.org/CorpusID:269032933
https://api.semanticscholar.org/CorpusID:271310065

References IV
Mao, Huanru Henry (Dec. 2022). “Fine-Tuning Pre-trained
Transformers into Decaying Fast Weights”. In: Proceedings of
the 2022 Conference on Empirical Methods in Natural
Language Processing. Abu Dhabi, United Arab Emirates:
Association for Computational Linguistics, pp. 10236–10242.
doi: 10.18653/v1/2022.emnlp-main.697.
Mereghetti, Carlo and Beatrice Palano (2000). “Threshold
circuits for iterated matrix product and powering”. In: RAIRO
Theor. Informatics Appl. 34, pp. 39–46. url:
https://api.semanticscholar.org/CorpusID:13237763.
Merrill, William, Jackson Petty, and Ashish Sabharwal (2024).
“The Illusion of State in State-Space Models”. In: ArXiv
abs/2404.08819. url:
https://api.semanticscholar.org/CorpusID:269149086.
MiniMax et al. (2025). MiniMax-01: Scaling Foundation
Models with Lightning Attention. arXiv: 2501.08313 [cs.CL].
url: https://arxiv.org/abs/2501.08313.

https://doi.org/10.18653/v1/2022.emnlp-main.697
https://api.semanticscholar.org/CorpusID:13237763
https://api.semanticscholar.org/CorpusID:269149086
https://arxiv.org/abs/2501.08313
https://arxiv.org/abs/2501.08313

References V
Peng, Bo et al. (2024). “Eagle and Finch: RWKV with
Matrix-Valued States and Dynamic Recurrence”. In.
Poli, Michael et al. (2024). Mechanistic Design and Scaling of
Hybrid Architectures. url: https://arxiv.org/abs/2403.17844.
Qin, Zhen et al. (2022). “The devil in linear transformer”. In:
arXiv preprint arXiv:2210.10340.
Qin, Zhen et al. (2024a). “HGRN2: Gated Linear RNNs with
State Expansion”. In: url:
https://api.semanticscholar.org/CorpusID:269043328.
Qin, Zhen et al. (2024b). “Various Lengths, Constant Speed:
Efficient Language Modeling with Lightning Attention”. In:
ArXiv abs/2405.17381. url:
https://api.semanticscholar.org/CorpusID:270063820.
Schlag, Imanol, Kazuki Irie, and Jürgen Schmidhuber (2021).
“Linear Transformers Are Secretly Fast Weight Programmers”.
In: International Conference on Machine Learning. url:
https://api.semanticscholar.org/CorpusID:235377069.

https://arxiv.org/abs/2403.17844
https://api.semanticscholar.org/CorpusID:269043328
https://api.semanticscholar.org/CorpusID:270063820
https://api.semanticscholar.org/CorpusID:235377069

References VI

Sun, Yu et al. (2024a). “Learning to (Learn at Test Time):
RNNs with Expressive Hidden States”. In: ArXiv
abs/2407.04620. url:
https://api.semanticscholar.org/CorpusID:271039606.
Sun, Yutao et al. (2023). “Retentive network: A successor to
transformer for large language models”. In: arXiv preprint
arXiv:2307.08621.
Sun, Yutao et al. (2024b). “You Only Cache Once:
Decoder-Decoder Architectures for Language Models”. In: The
Thirty-eighth Annual Conference on Neural Information
Processing Systems. url:
https://openreview.net/forum?id=25Ioxw576r.
Yang, Songlin, Jan Kautz, and Ali Hatamizadeh (2024). Gated
Delta Networks: Improving Mamba2 with Delta Rule. arXiv:
2412.06464 [cs.CL]. url: https://arxiv.org/abs/2412.06464.

https://api.semanticscholar.org/CorpusID:271039606
https://openreview.net/forum?id=25Ioxw576r
https://arxiv.org/abs/2412.06464
https://arxiv.org/abs/2412.06464

References VII

Yang, Songlin et al. (2023). “Gated Linear Attention
Transformers with Hardware-Efficient Training”. In: CoRR
abs/2312.06635. doi: 10.48550/ARXIV.2312.06635. arXiv:
2312.06635. url:
https://doi.org/10.48550/arXiv.2312.06635.
Yang, Songlin et al. (2024). “Parallelizing Linear Transformers
with the Delta Rule over Sequence Length”. In: The
Thirty-eighth Annual Conference on Neural Information
Processing Systems. url:
https://openreview.net/forum?id=y8Rm4VNRPH.
Zhang, Yu et al. (2024). “Gated Slot Attention for Efficient
Linear-Time Sequence Modeling”. In: The Thirty-eighth Annual
Conference on Neural Information Processing Systems. url:
https://openreview.net/forum?id=jY4PhQibmg.

https://doi.org/10.48550/ARXIV.2312.06635
https://arxiv.org/abs/2312.06635
https://doi.org/10.48550/arXiv.2312.06635
https://openreview.net/forum?id=y8Rm4VNRPH
https://openreview.net/forum?id=jY4PhQibmg

	References

