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Background



Attention in Transformers [Vaswani et al. ’17]
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Attention: Training

Attention requires                        work but can be done in          steps
→ Parallel training that is rich in matmuls.

Attention: Number sequential steps 
is independent of sequence length!
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Attention: Generative Inference

Need to keep around “KV-cache” 
that takes            memory. 
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Attention enables scalable training of accurate sequence models, but requires:
● Quadratic compute for training. 
● Linear memory for inference.



From Softmax to Linear Attention [Katharopoulos et al. ’20]

Softmax 
Attention

(Simple) Linear 
Attention



From Softmax to Linear Attention [Katharopoulos et al. ’20]

Softmax 
Attention

(Simple) Linear 
Attention



From Softmax to Linear Attention [Katharopoulos et al. ’20]

Training (“Parallel Form”) Inference (“Recurrent Form”)

Softmax 
Attention

(Simple) Linear 
Attention



Linear Attention: Inference



Linear Attention: Inference



Linear Attention: Inference



Linear Attention: Inference



Linear Attention: Inference
Key K
Value V
Query Q



Linear Attention: Inference
Key K
Value V
Query Q



Linear Attention: Inference
Key K
Value V
Query Q



Linear Attention: Inference
Key K
Value V
Query Q



Linear Attention: Inference
Key K
Value V
Query Q



Linear Attention: Inference

Linear Attention = Linear RNNs with 
matrix-valued hidden states
→ Constant-memory inference!
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Linear Attention: Naive Parallel Form

Training (“Parallel Form”) Inference (“Recurrent Form”)

Compute 
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Linear attention has constant-memory inference, but still requires: 
● Quadratic compute for training. 
● (Can theoretically use recurrent form + parallel scan for           compute and            

              work, but this is not at all practical.) 



Linear Attention: Why don’t use recurrent form for training?

Recurrent form is slow in training

● Strict sequential computation, lacking sequence parallelism.
● All operations are either elementwise addition/multiplication or reduction, 

lacking matmul ops -> cannot leverage tensor cores.
● Requires materialization of each time step’s hidden states

○ High I/O cost due to large hidden state size 
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Linear Attention: Why don’t use recurrent form for training?

Why don’t use parallel scan?

● Strict sequential computation, lacking sequence parallelism.
● All operations are either elementwise addition/multiplication or reduction, 

lacking matmul operations -> cannot leverage tensor cores.
● Requires materialization of each time step’s hidden states

○ Mamba1 reduces I/O costs by keeping all hidden states in SRAM
■ Due to the limited SRAM size, it is hard to scale up state size

● State expansion is important for RNNs 
○ Mamba2, HGRN2, RWKV5/6, etc



Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Pure RNN → “Chunk-level” RNN
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Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Second step: state passing

Chunk 1 Chunk 2 Chunk 3

Recurrent steps reduce from L to L/C
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Contribution from 
previous chunk.

Chunk-level (linear) 
attention for contribution 
from current chunk.

Third step: output computation



Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Chunkwise parallel form interpolates between fully parallel and recurrent forms.
● C = L → Fully parallel form 
● C = 1 → Fully recurrent form
● C is set to multiple of 16 to leverage tensor cores 

○ Larger/smaller C
■ Fewer/more recurrent step
■ Fewer/more hidden state materialization
■ Higher/smaller FLOPs

○ In practice we use C={64, 128, 256} to make a balance 
■ Enables linear scaling of training length in a hardware-efficient 

manner
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Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Chunkwise parallel form interpolates between fully parallel and recurrent forms.
● C = L → Fully parallel form 
● C = 1 → Fully recurrent form
● C is set to multiple of 16 to leverage tensor cores 

○ Larger/smaller C
■ Fewer/more recurrent step
■ Fewer/more hidden state materialization
■ Higher/smaller FLOPs

○ In practice we use C={64, 128, 256} to make a balance 
■ Hardware efficient linear scaling in training length 
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Linear Attention: Issues

Issue 1: 
Slower than optimized 
implementations of softmax 
attention in practice.



Linear Attention: Issues

Issue 2: 
Underperforms softmax 
attention by a significant 
margin.

Model PPL LM Eval

Softmax attention 16.9 50.9

Linear attention with decay 
(RetNet)

18.6 48.9



Our Contributions

Issue 1: 
Slower than optimized 
implementations of softmax 
attention in practice.

Issue 2: 
Underperforms softmax 
attention by a significant 
margin.

Flash Linear Attention: 
Hardware-efficient I/O-aware 
implementation of linear 
attention

Gated Linear Attention:
Linear attention with 
data-dependent “forget” gate



Flash Linear Attention
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Attention (Nonmaterization version)

● Pros: minimal I/O cost
○ Hidden states are kept on SRAM throughout the recurrence 

■ No I/O cost between HBM and SRAM
○ Only requires loading Q/K/V from HBM once
○ Ideal for short training length where I/O cost dominate
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FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention
(Nonmaterization version)

● Cons: lacking sequence-level parallelism across chunks
○ Requires a large batch size to keep SMs busy



FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention
(Nonmaterization version)

● Sequence parallelism is important
○ Batch size would be small in large scale and long sequence training
○ SMs have low occupancy  → Slow down training



FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention
(Materialization version)

Step1:  Sequential state computation
● Fuse local state computation and state passing (i.e., step1-2 in chunkwise 

linear attention) in a single kernel to minimize I/O cost
○ One pass of loading K/V and storing S



FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention
(Materialization version)

Step2: Parallel output computation
● Compute output of the each chunk in parallel based on previous chunk’s 

state and current chunk’s query/key/value blocks 



FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention
(Materialization version)

● Pros: enable chunkwise parallelism 
○ High SM occupancy
○ Speedup large scale training



FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention
(Materialization version)

● Cons: Higher I/O cost and memory use
○ K/V are loaded twice now; S is saved and loaded once 
○ Reduce memory use via recomputation in backward pass



FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

4x



FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

https://github.com/sustcsonglin/flash-linear-attention



Gated Linear Attention



Simple Linear Attention

Gated Linear Attention: Data-dependent Multiplicative Gate



Gated Linear Attention

Simple Linear Attention

[1 1 1]

Gated Linear Attention: Data-dependent Multiplicative Gate



Gated Linear Attention

Simple Linear Attention

Gated Linear Attention: Parallel Forms

GLA also admits a chunkwise 
parallel form for subquadratic, 
parallel training! 

cumulative decay



Gated Linear Attention: Decay-aware “Chunkwise Parallel Form”

First step: local state computation

Chunk 1 Chunk 2 Chunk 3



Gated Linear Attention: Decay-aware “Chunkwise Parallel Form” 

Second step: state passing

Chunk 1 Chunk 2 Chunk 3



Third step: output computation

Contribution from 
previous chunk.

Gated Linear Attention: Decay-aware “Chunkwise Parallel Form” 



Chunk-level (linear) attention for contribution from current chunk

Gated Linear Attention: Decay-aware “Chunkwise Parallel Form” 

Stable Tensor core



Chunk-level (linear) attention for contribution from current chunk

Secondary chunking

Gated Linear Attention: Decay-aware “Chunkwise Parallel Form” 

Stable Tensor core



Gated Linear Attention: Throughput



Gated Linear Attention: Performance

Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

1.3B models trained on 100B tokens



Gated Linear Attention: Recall-oriented Tasks
SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K143329 B. Purpose for 
Submission: To obtain clearance for a new device, Amplivue® Trichomonas Assay C. Measurand: A 
conserved multi-copy sequence of Trichomonas vaginalis genomic DNA D. Type of Test: Nucleic acid 
amplification assay (Helicase-dependent Amplification, HDA) E. Applicant: Quidel Corporation F. 
Proprietary and Established Names: Amplivue® Trichomonas Assay G. Regulatory Information: 1. 
Regulation section: 21 CFR 866.3860 2. Classification: Class II 3. Product code: OUY - Trichomonas 
vaginalis nucleic acid amplification test system 4. Panel: 83 - Microbiology 2 H. Intended Use: 1. 
Intended use(s): The AmpliVue® Trichomonas Assay is an in vitro diagnostic test, uses isothermal 
amplification technology (helicase-dependent amplification, HDA) for the qualitative detection of 
Trichomonas vaginalis nucleic acids isolated from clinician-collected vaginal swab specimens obtained 
from symptomatic or asymptomatic females to aid in the diagnosis of trichomoniasis. 2. Indication(s) 
for use: Same as Intended Use 3. Special conditions for use statement(s): For prescription use only 
4. Special instrument requirements: None I. Device Description: The AmpliVue® Trichomonas Assay is a 
self-contained disposable amplicon detection device that uses an isothermal amplification technology 
named Helicase-Dependent Amplification (HDA) for the detection of Trichomonas vaginalis in 
clinician-collected vaginal swabs from symptomatic and asymptomatic women. The assay targets a 
conserved multi-copy sequence of the T. vaginalis genomic DNA. The vaginal swab is eluted in a lysis 
tube, and the cells are lysed by heat treatment. After heat treatment, an aliquot of the lysed 
specimen is transferred into a dilution tube. An aliquot of this diluted sample is then added to a 
reaction tube containing a lyophilized mix of HDA reagents including primers specific for the 
amplification of a…



Type of Test → Nucleic acid amplification assay 
(Helicase-dependent Amplification, HDA)
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Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet  18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

1.3B models trained on 100B tokens

Gated Linear Attention: Recall-oriented Tasks



Gated Linear Attention: Length Generalization

10

6



Gated Linear Attention Transformers or State-Space Models?

Gated Linear Attention

Mamba



Gated Linear Attention Transformers are State-Space Models!
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Gated Linear Attention Transformers are Scalable State-Space 
Models!

Scalable state-space models ⊂ Gated linear attention 



Scalable state-space models ⊂ Gated linear attention 
Scalable here: efficient scaling of state size → recurrence has matmul form

Gated Linear Attention Transformers are Scalable State-Space 
Models!



Scalable state-space models ⊂ Gated linear attention 
              must be of the form          to rewrite recurrence in matmul form

Gated Linear Attention Transformers are Scalable State-Space 
Models!



Summary

Linear attention enables subquadratic, parallel training, and linear 
constant-memory inference. But suffers from poor performance and lack 
of hardware-efficient implementations.

This work:
- Hardware-efficient implementation of linear attention.
- Gated parameterization that closes the gap between linear attention 

and Transformers/Mamba.
- Connections between gated linear attention and state-space models.
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Deficiencies of Linear Attention / State-Space Models

[Example from: Arora et al. ’24]

Input

Output

Multi-Query Associative Recall Task



How can we improve associative recall?

DeltaNet [Schlag et al. ’21]: Use vector representations to retrieve and 
update memory (“Fast Weight Programmers”).
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How can we improve associative recall?

DeltaNet [Schlag et al. ’21]: Use vector representations to retrieve and 
update memory (“Fast Weight Programmers”).

Retrieve old memory

Combine old memory with 
current value vector

Remove old memory, write 
new memory

Key, query, value vectors

Get output



DeltaNet Associative Recall Performance

Multi-Query Associative Recall Task



DeltaNet Associative Recall Performance

Mechanistic architecture design



DeltaNet Issue
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DeltaNet: Ordinary linear attention with “pseudo”-value vectors



DeltaNet Issue

DeltaNet: Ordinary linear attention with “pseudo”-value vectors

Unlike in linear attention, the pseudo value vector        depends on the 
previous hidden state          . → Not scalable! 



Parallelizing DeltaNet

DeltaNet: Ordinary linear attention with “pseudo”-value vectors

If there is an efficient way to compute      , we would be good to go!  



Parallelizing DeltaNet: A Simple Reparameterization
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Parallelizing DeltaNet: A Simple Reparameterization

Product of generalized 
Householder matrices.



Parallelizing DeltaNet: Memory-efficient Representation

→

→
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Parallelizing DeltaNet: Memory-efficient Representation



Parallelizing DeltaNet: Chunkwise Parallel form

Recurrent W construction



Parallelizing DeltaNet: Chunkwise Parallel form

Recurrent U construction



Parallelizing DeltaNet: Chunkwise Parallel form

local state computation  



Parallelizing DeltaNet: Chunkwise Parallel form

State passing  



Parallelizing DeltaNet: Chunkwise Parallel form

Output computation is the same as vanilla linear attention with new values!



Parallelized DeltaNet: Speed

Dimension Length Speed-up (vs. recurrent)

64 2048 5.5x

4096 7.6x

8192 11.5x

128 2048 8.9x

4096 13.2x

256 2048 13.7x

On a single H100



Parallelized DeltaNet: Performance

Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

DeltaNet 16.9 51.6 34.7

DeltaNet + Sliding window attention 16.6 52.1 40.0

DeltaNet + Global attention on 2 layers 16.6 51.8 47.91.3B models trained on 100B tokens



Hybridizing DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet
Hybrid 1: Sliding window 
attention every other layer



Hybridizing DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNetHybrid 1: Sliding window 
attention every other layer 
(e.g., Griffin, Samba)



Hybridizing DeltaNet

Global Attention

DeltaNet

DeltaNet

DeltaNet

DeltaNet

DeltaNet

DeltaNet

Global Attention

DeltaNet

DeltaNet

DeltaNet

DeltaNetHybrid 2: Global attention on 
the 2nd and middle layer 
(e.g., Hungry Hungry Hippos)



Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

DeltaNet 16.9 51.6 34.7

Hybrid 1: DeltaNet + Sliding window attention 16.6 52.1 40.0

Hybrid 2: DeltaNet + Global attention on 2 layers 16.6 51.8 47.9

Hybrid DeltaNet: Performance

1.3B models trained on 100B tokens



Generalizing Gated Linear Attention / State-Space Models

Gated Linear Attention / State-Space Models

Recurrence with elementwise product

Memory read-out



Generalizing Gated Linear Attention / State-Space Models

Multiplicative updates take            and 
are therefore efficient, but does not allow 
for interactions across channels.

Recurrence with elementwise product

Memory read-out

Gated Linear Attention / State-Space Models



Generalizing Gated Linear Attention / State-Space Models

Recurrence with matmul

Memory read-out

Generalized Linear Transformers



Generalizing Gated Linear Attention / State-Space Models

Matmul-based updates can model 
interactions across channels, but take     
           and are thus too expensive.

Generalized Linear Transformers

Recurrence with matmul

Memory read-out



Generalizing Gated Linear Attention / State-Space Models

Generalized Linear Transformers with Structured Matmuls

Recurrence with identity + low-rank

Memory read-out



Generalizing Gated Linear Attention / State-Space Models

Generalized Linear Transformers with Structured Matmuls

Recurrence with identity + low-rank

Memory read-out

Can model interactions across 
channels in             ! DeltaNet uses          

and is thus a special case.



Generalizing Gated Linear Attention / State-Space Models

Open/Future Work 

What about more general associative operators?



Summary

Linear attention and SSMs have trouble with recall-oriented tasks.

DeltaNet operationalizes a key-value retrieval/update mechanism, but 
unclear how to parallelize for efficient training.

This work:
- Recasts DeltaNet as linear attention with “pseudo”-value vectors ⇒ 

the chunkwise algorithm from GLA still applies!
- DeltaNet outperforms GLA/Mamba.
- Hybrid DeltaNet outperforms Transformers.





Thanks!


